Skip to main content

Advertisement

Log in

Glucose-Regulated Protein 78 (GRP78) Mediated the Efficacy to Curcumin Treatment on Hepatocellular Carcinoma

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Glucose-regulated protein 78 (GRP78) plays an important role in the therapeutic treatment and progression of cancer. However, little is known about the effect of GRP78 expression to curcumin in hepatocellular carcinoma (HCC).

Materials and Methods

In this study, we generated GRP78 knockdown cells (GRP78KD) by a short interfering RNA (siRNA) technique. The antiproliferation effects of curcumin were determined by MTT assay, TUNEL assay, and cell cycle determination.

Results

We found that GRP78KD cells were more resistant to curcumin treatment compared with the parental cells in MTT assay. The apoptosis cell population was increased in scrambled-siRNA cells treated with curcumin compared with GRP78KD cells in cell cycle distribution and TUNEL assays. Finally, we found that knocking down GRP78 causes resistance to curcumin treatment through the suppression of caspase-3 and caspase-8 expression levels.

Conclusions

We conclude that the expression level of GRP78 may contribute to the therapeutic effect of curcumin on HCC cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Parkin DM. Global cancer statistics in the year 2000. Lancet Oncol. 2001;2:533–43.

    Article  PubMed  CAS  Google Scholar 

  2. Cabrera R, Nelson DR. Review article: the management of hepatocellular carcinoma. Aliment Pharmacol Ther. 2010;31:461–76.

    Article  PubMed  CAS  Google Scholar 

  3. Nagorney DM, van Heerden JA, Ilstrup DM, Adson MA. Primary hepatic malignancy: surgical management and determinants of survival. Surgery 1989;106:740–8 (discussion 748–9).

    PubMed  CAS  Google Scholar 

  4. Primary liver cancer in Japan. Clinicopathologic features and results of surgical treatment. Liver Cancer Study Group of Japan. Ann Surg 1990;211:277–87.

    Google Scholar 

  5. Paquet KJ, Koussouris P, Mercado MA, Kalk JF, Müting D, Rambach W. Limited hepatic resection for selected cirrhotic patients with hepatocellular or cholangiocellular carcinoma: a prospective study. Br J Surg. 1991;78:459–62.

    Article  PubMed  CAS  Google Scholar 

  6. Sugioka A, Tsuzuki T, Kanai T. Postresection prognosis of patients with hepatocellular carcinoma. Surgery. 1993;113:612–8.

    PubMed  CAS  Google Scholar 

  7. Huang CC, Wu MC, Xu GW, Li DZ, Cheng H, Tu ZX, et al. Overexpression of the MDR1 gene and P-glycoprotein in human hepatocellular carcinoma. J Natl Cancer Inst. 1992;84:262–4.

    Article  PubMed  CAS  Google Scholar 

  8. Liu L, Cao Y, Chen C, Zhang X, McNabola A, Wilkie D, et al. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res. 2006;66:11851–8.

    Article  PubMed  CAS  Google Scholar 

  9. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–90.

    Article  PubMed  CAS  Google Scholar 

  10. Cheng AL, Kang YK, Chen Z, Tsao J, Qin S, Kim JS, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2009;10:25–34.

    Article  PubMed  CAS  Google Scholar 

  11. Rimassa L, Santoro A. Sorafenib therapy in advanced hepatocellular carcinoma: the SHARP trial. Expert Rev Anticancer Ther. 2009;9:739–45.

    Article  PubMed  CAS  Google Scholar 

  12. Zhang T, Ding X, Wei D, Cheng P, Su X, Liu H, et al. Sorafenib improves the survival of patients with advanced hepatocellular carcinoma: a meta-analysis of randomized trials. Anticancer Drugs. 2010;21:326–32.

    Article  PubMed  CAS  Google Scholar 

  13. Vitale A, Volk ML, Pastorelli D, Lonardi S, Farinati F, Burra P, et al. Use of sorafenib in patients with hepatocellular carcinoma before liver transplantation: a cost-benefit analysis while awaiting data on sorafenib safety. Hepatology. 2010;51:165–73.

    PubMed  CAS  Google Scholar 

  14. A new prognostic system for hepatocellular carcinoma: a retrospective study of 435 patients: the Cancer of the Liver Italian Program (CLIP) investigators. Hepatology. 1998;28:751–5.

  15. Hsu C, Shen YC, Cheng CC, Hu FC, Cheng AL. Geographic difference in survival outcome for advanced hepatocellular carcinoma: implications on future clinical trial design. Contemp Clin Trials. 2010;31:55–61.

    Article  PubMed  Google Scholar 

  16. Chiou JF, Tai CJ, Huang MT, Wei PL, Wang YH, An J, et al. Glucose-regulated protein 78 is a novel contributor to acquisition of resistance to sorafenib in hepatocellular carcinoma. Ann Surg Oncol. 2010;17:603–12.

    Article  PubMed  Google Scholar 

  17. Lim SO, Park SG, Yoo JH, Park YM, Kim HJ, Jang KT, et al. Expression of heat shock proteins (HSP27, HSP60, HSP70, HSP90, GRP78, GRP94) in hepatitis B virus-related hepatocellular carcinomas and dysplastic nodules. World J Gastroenterol. 2005;11:2072–9.

    PubMed  CAS  Google Scholar 

  18. Luk JM, Lam CT, Siu AF, Lam BY, Ng IO, Hu MY, et al. Proteomic profiling of hepatocellular carcinoma in Chinese cohort reveals heat-shock proteins (Hsp27, Hsp70, GRP78) up-regulation and their associated prognostic values. Proteomics. 2006;6:1049–57.

    Article  PubMed  CAS  Google Scholar 

  19. Shuda M, Kondoh N, Imazeki N, Tanaka K, Okada T, Mori K, et al. Activation of the ATF6, XBP1 and grp78 genes in human hepatocellular carcinoma: a possible involvement of the ER stress pathway in hepatocarcinogenesis. J Hepatol. 2003;38:605–14.

    Article  PubMed  CAS  Google Scholar 

  20. Anand P, Sundaram C, Jhurani S, Kunnumakkara AB, Aggarwal BB. Curcumin and cancer: an “old-age” disease with an “age-old” solution. Cancer Lett. 2008;267:133–64.

    Article  PubMed  CAS  Google Scholar 

  21. Hsu CH, Cheng AL. Clinical studies with curcumin. Adv Exp Med Biol. 2007;595:471–80.

    Article  PubMed  Google Scholar 

  22. Singh S, Khar A. Biological effects of curcumin and its role in cancer chemoprevention and therapy. Anticancer Agents Med Chem. 2006;6:259–70.

    Article  PubMed  CAS  Google Scholar 

  23. Dhandapani KM, Mahesh VB, Brann DW. Curcumin suppresses growth and chemoresistance of human glioblastoma cells via AP-1 and NFkappaB transcription factors. J Neurochem. 2007;102:522–38.

    Article  PubMed  CAS  Google Scholar 

  24. Kunnumakkara AB, Anand P, Aggarwal BB. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett. 2008;269:199–225.

    Article  PubMed  CAS  Google Scholar 

  25. Aggarwal BB, Shishodia S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol. 2006;71:1397–421.

    Article  PubMed  CAS  Google Scholar 

  26. Pae HO, Jeong SO, Jeong GS, Kim KM, Kim HS, Kim SA, et al. Curcumin induces pro-apoptotic endoplasmic reticulum stress in human leukemia HL-60 cells. Biochem Biophys Res Commun. 2007;353:1040–5.

    Article  PubMed  CAS  Google Scholar 

  27. Chang YJ, Chiu CC, Wu CH, An J, Wu CC, Liu TZ, et al. Glucose-regulated protein 78 (GRP78) silencing enhances cell migration but does not influence cell proliferation in hepatocellular carcinoma. Ann Surg Oncol. 2010;17:1703–9.

    Article  PubMed  Google Scholar 

  28. Wang SK, Liang PH, Astronomo RD, Hsu TL, Hsieh SL, Burton DR, et al. Targeting the carbohydrates on HIV-1: Interaction of oligomannose dendrons with human monoclonal antibody 2G12 and DC-SIGN. Proc Natl Acad Sci USA. 2008;105:3690–5.

    Article  PubMed  CAS  Google Scholar 

  29. Sowinski S, Jolly C, Berninghausen O, Purbhoo MA, Chauveau A, Köhler K, et al. Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nat Cell Biol. 2008;10:211–9.

    Article  PubMed  CAS  Google Scholar 

  30. Huang MT, Wei PL, Liu JJ, Liu DZ, Huey-Chun H, An J, et al. Knockdown of thrombomodulin enhances HCC cell migration through increase of ZEB1 and decrease of E-cadherin gene expression. Ann Surg Oncol. 2010;17:3379–85.

    Article  PubMed  Google Scholar 

  31. Aggarwal BB, Sung B. Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends Pharmacol Sci. 2009;30:85–94.

    Article  PubMed  CAS  Google Scholar 

  32. Tong QS, Zheng LD, Lu P, Jiang FC, Chen FM, Zeng FQ, et al. Apoptosis-inducing effects of curcumin derivatives in human bladder cancer cells. Anticancer Drugs. 2006;17:279–87.

    Article  PubMed  CAS  Google Scholar 

  33. Moragoda L, Jaszewski R, Majumdar AP. Curcumin induced modulation of cell cycle and apoptosis in gastric and colon cancer cells. Anticancer Res. 2001;21:873–8.

    PubMed  CAS  Google Scholar 

  34. Rashmi R, Kumar S, Karunagaran D. Ectopic expression of Hsp70 confers resistance and silencing its expression sensitizes human colon cancer cells to curcumin-induced apoptosis. Carcinogenesis. 2004;25:179–87.

    Article  PubMed  CAS  Google Scholar 

  35. Nagata S. Apoptotic DNA fragmentation. Exp Cell Res. 2000;256:12–8.

    Article  PubMed  CAS  Google Scholar 

  36. Kajstura M, Halicka HD, Pryjma J, Darzynkiewicz Z. Discontinuous fragmentation of nuclear DNA during apoptosis revealed by discrete “sub-G1” peaks on DNA content histograms. Cytometry A. 2007;71:125–31.

    PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by a grant from Taipei University and Hospital Research Grants (98TMU-TMUH-16), TMU-CECR (DOH99-TD-C-111-008), and CCMP100-RD-026.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Te Huang MD.

Additional information

Y.-J. Chang and H.-H. Liang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, YJ., Tai, CJ., Kuo, LJ. et al. Glucose-Regulated Protein 78 (GRP78) Mediated the Efficacy to Curcumin Treatment on Hepatocellular Carcinoma. Ann Surg Oncol 18, 2395–2403 (2011). https://doi.org/10.1245/s10434-011-1597-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-011-1597-3

Keywords

Navigation