Skip to main content
Log in

CpG Island Methylator Phenotype Associated with Tumor Recurrence in Tumor–Node–Metastasis Stage I Hepatocellular Carcinoma

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

CpG island methylator phenotype (CIMP), characterized by simultaneous methylation of multiple tumor suppressor genes (TSGs), has been reported to be associated with biological malignancy in many cancers. Whether CIMP is potentially predictive of clinical outcome in hepatocellular carcinoma (HCC) remains unknown.

Methods

We investigated the methylation status of ten TSGs and CIMP in 115 samples of HCC and 48 samples of corresponding nonneoplastic liver tissues using a methylation-specific polymerase chain reaction.

Results

The methylation frequencies of the ten genes examined in HCC were 40.0% for p14 ARF, 60.9% for p15 INK4b, 70.4% for p16 INK4a, 34.8% for p73, 70.4% for GSTP1, 64.3% for MGMT, 13.0% for hMLH1, 59.1% for RARβ, 82.6% for SOCS-1, and 80.9% for OPCML. CIMP+ (with six or more methylated genes) was detected in 68 (59.1%) of 115 HCCs and none of 48 nonneoplastic liver tissues. On stratified univariate analysis, patients with tumor–node–metastasis (TNM) stage I HCC with CIMP+ had significantly shorter overall survival (OS) (P = 0.002) and recurrence-free survival (RFS) (P = 0.042) than those with CIMP−. Furthermore, multivariate analysis revealed CIMP+ as an independent prognostic factor for both OS [hazard ratio (HR), 12.266; P = 0.015] and RFS (HR, 2.275; P = 0.032) in TNM stage I patients.

Conclusions

CIMP+ may specifically define a subgroup of patients with unfavorable outcome in TNM stage I HCC. Examination of CIMP status may be useful for stratifying prognosis of patients with early-stage HCC and identifying patients who are at higher risk for recurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132(7):2557–76.

    Article  CAS  PubMed  Google Scholar 

  2. Bosch FX, Ribes J, Diaz M, Cleries R. Primary liver cancer: worldwide incidence and trends. Gastroenterology. 2004;127(5):S5–S16.

    Article  PubMed  Google Scholar 

  3. Tung-Ping Poon R, Fan ST, Wong J. Risk factors, prevention, and management of postoperative recurrence after resection of hepatocellular carcinoma. Ann Surg. 2000;232(1):10–24.

    Article  CAS  PubMed  Google Scholar 

  4. Portolani N, Coniglio A, Ghidoni S, et al. Early and late recurrence after liver resection for hepatocellular carcinoma: prognostic and therapeutic implications. Ann Surg. 2006;243(2):229–35.

    Article  PubMed  Google Scholar 

  5. Llovet JM, Bruix J. Novel advancements in the management of hepatocellular carcinoma in 2008. J Hepatol. 2008;48(Suppl 1):S20–37.

    Article  CAS  PubMed  Google Scholar 

  6. Thorgeirsson SS, Lee JS, Grisham JW. Molecular prognostication of liver cancer: end of the beginning. J Hepatol. 2006;44(4):798–805.

    Article  CAS  PubMed  Google Scholar 

  7. Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med. 2003;349(21):2042–54.

    Article  CAS  PubMed  Google Scholar 

  8. Das PM, Singal R. DNA methylation and cancer. J Clin Oncol. 2004;22(22):4632–42.

    Article  CAS  PubMed  Google Scholar 

  9. Shen L, Ahuja N, Shen Y, Habib NA, Toyota M, Rashid A, Issa JP. DNA methylation and environmental exposures in human hepatocellular carcinoma. J Natl Cancer Inst. 2002;94(10):755–61.

    CAS  PubMed  Google Scholar 

  10. Yang B, Guo M, Herman JG, Clark DP. Aberrant promoter methylation profiles of tumor suppressor genes in hepatocellular carcinoma. Am J Pathol. 2003;163(3):1101–7.

    CAS  PubMed  Google Scholar 

  11. Su PF, Lee TC, Lin PJ, et al. Differential DNA methylation associated with hepatitis B virus infection in hepatocellular carcinoma. Int J Cancer. 2007;121(6):1257–64.

    Article  CAS  PubMed  Google Scholar 

  12. Ko E, Kim Y, Kim SJ, et al. Promoter hypermethylation of the p16 gene is associated with poor prognosis in recurrent early-stage hepatocellular carcinoma. Cancer Epidemiol Biomarkers Prev. 2008;17(9):2260–7.

    Article  CAS  PubMed  Google Scholar 

  13. Brock MV, Gou M, Akiyama Y, et al. Prognostic importance of promoter hypermethylation of multiple genes in esophageal adenocarcinoma. Clin Cancer Res. 2003;9(8):2912–9.

    CAS  PubMed  Google Scholar 

  14. Toyota M, Ahuja N, Ohe-Toyota M, et al. CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA. 1999;96(15):8681–6.

    Article  CAS  PubMed  Google Scholar 

  15. Toyota M, Ahuja N, Suzuki H, et al. Aberrant methylation in gastric cancer associated with the CpG island methylator phenotype. Cancer Res. 1999;59(21):5438–42.

    CAS  PubMed  Google Scholar 

  16. Ueki T, Toyota M, Sohn T, et al. Hypermethylation of multiple genes in pancreatic adenocarcinoma. Cancer Res. 2000;60(7):1835–9.

    CAS  PubMed  Google Scholar 

  17. Catto JW, Azzouzi AR, Rehman I, et al. Promoter hypermethylation is associated with tumor location, stage, and subsequent progression in transitional cell carcinoma. J Clin Oncol. 2005;23(13):2903–10.

    Article  CAS  PubMed  Google Scholar 

  18. Roman-Gomez J, Jimenez-Velasco A, Agirre X, et al. Lack of CpG island methylator phenotype defines a clinical subtype of T-cell acute lymphoblastic leukemia associated with good prognosis. J Clin Oncol. 2005;23(28):7043–9.

    Article  CAS  PubMed  Google Scholar 

  19. Abe M, Ohira M, Kaneda A, et al. CpG island methylator phenotype is a strong determinant of poor prognosis in neuroblastomas. Cancer Res. 2005;65(3):828–34.

    CAS  PubMed  Google Scholar 

  20. Tanemura A, Terando AM, Sim MS, et al. CpG island methylator phenotype predicts progression of malignant melanoma. Clin Cancer Res. 2009;15(5):1801–7.

    Article  CAS  PubMed  Google Scholar 

  21. Van Rijnsoever M, Elsaleh H, Joseph D, et al. CpG island methylator phenotype is an independent predictor of survival benefit from 5-fluorouracil in stage III colorectal cancer. Clin Cancer Res. 2003;9(8):2898–903.

    PubMed  Google Scholar 

  22. Zhang C, Li Z, Cheng Y, et al. CpG island methylator phenotype association with elevated serum alpha-fetoprotein level in hepatocellular carcinoma. Clin Cancer Res. 2007;13(3):944–52.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang C, Guo X, Jiang G, et al. CpG island methylator phenotype association with upregulated telomerase activity in hepatocellular carcinoma. Int J Cancer. 2008;123(5):998–1004.

    Article  CAS  PubMed  Google Scholar 

  24. Sellar GC, Watt KP, Rabiasz GJ, et al. OPCML at 11q25 is epigenetically inactivated and has tumor-suppressor function in epithelial ovarian cancer. Nat Genet. 2003;34(3):337–43.

    Article  CAS  PubMed  Google Scholar 

  25. Yuan Y, Mendez R, Sahin A, Dai JL. Hypermethylation leads to silencing of the SYK gene in human breast cancer. Cancer Res. 2001;61(14):5558–61.

    CAS  PubMed  Google Scholar 

  26. Yuan Y, Wang J, Li J, et al. Frequent epigenetic inactivation of spleen tyrosine kinase gene in human hepatocellular carcinoma. Clin Cancer Res. 2006;12(22):6687–95.

    Article  CAS  PubMed  Google Scholar 

  27. van Engeland M, Weijenberg MP, Roemen GM, et al. Effects of dietary folate and alcohol intake on promoter methylation in sporadic colorectal cancer: the Netherlands cohort study on diet and cancer. Cancer Res. 2003;63(12):3133–7.

    PubMed  Google Scholar 

  28. Greene FL, Page DL, Fleming ID, et al. (editors). American Joint Committee on Cancer staging manual. 6th ed. Philadelphia: Springer; 2002.

    Google Scholar 

  29. Oue N, Mitani Y, Motoshita J, et al. Accumulation of DNA methylation is associated with tumor stage in gastric cancer. Cancer. 2006;106(6):1250–9.

    Article  CAS  PubMed  Google Scholar 

  30. Ottini L, Falchetti M, Lupi R, et al. Patterns of genomic instability in gastric cancer: clinical implications and perspectives. Ann Oncol. 2006;17(Suppl 7):vii97–102.

    Google Scholar 

  31. Pons F, Varela M, Llovet JM. Staging systems in hepatocellular carcinoma. HPB (Oxford). 2005;7(1):35–41.

    Google Scholar 

  32. Minagawa M, Ikai I, Matsuyama Y, et al. Staging of hepatocellular carcinoma: assessment of the Japanese TNM and AJCC/UICC TNM systems in a cohort of 13,772 patients in Japan. Ann Surg. 2007;245(6):909–22.

    Article  PubMed  Google Scholar 

  33. Vauthey JN, Lauwers GY, Esnaola NF, et al. Simplified staging for hepatocellular carcinoma. J Clin Oncol. 2002;20(6):1527–36.

    Article  PubMed  Google Scholar 

  34. Ye QH, Qin LX, Forgues M, et al. Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning. Nat Med. 2003;9(4):416–23.

    Article  CAS  PubMed  Google Scholar 

  35. Lee JS, Chu IS, Heo J, et al. Classification and prediction of survival in hepatocellular carcinoma by gene expression profiling. Hepatology. 2004;40(3):667–76.

    Article  CAS  PubMed  Google Scholar 

  36. Ding SJ, Li Y, Tan YX, et al. From proteomic analysis to clinical significance: overexpression of cytokeratin 19 correlates with hepatocellular carcinoma metastasis. Mol Cell Proteomics. 2004;3(1):73–81.

    CAS  PubMed  Google Scholar 

  37. Teodoridis JM, Hardie C, Brown R. CpG island methylator phenotype (CIMP) in cancer: causes and implications. Cancer Lett. 2008;268(2):177–86.

    Article  CAS  PubMed  Google Scholar 

  38. van Rijnsoever M, Grieu F, Elsaleh H, et al. Characterisation of colorectal cancers showing hypermethylation at multiple CpG islands. Gut. 2002;51(6):797–802.

    Article  PubMed  Google Scholar 

  39. Sun HC, Tang ZY, Wang L, et al. Postoperative interferon alpha treatment postponed recurrence and improved overall survival in patients after curative resection of HBV-related hepatocellular carcinoma: a randomized clinical trial. J Cancer Res Clin Oncol. 2006;132(7):458–65.

    Article  CAS  PubMed  Google Scholar 

  40. Lau WY, Lai EC, Leung TW, Yu SC. Adjuvant intra-arterial iodine-131-labeled lipiodol for resectable hepatocellular carcinoma: a prospective randomized trial-update on 5-year and 10-year survival. Ann Surg. 2008;247(1):43–8.

    Article  PubMed  Google Scholar 

  41. Shames DS, Minna JD, Gazdar AF. Methods for detecting DNA methylation in tumors: from bench to bedside. Cancer Lett. 2007;251(2):187–98.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the grant of China Medical Board of New York, Inc. (98-677) and the National Natural Science Foundation of China (30872489 and 30972916). The authors declare that there are no conflicts of interest or financial disclosures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunfei Yuan MD.

Additional information

Binkui Li and Wenji Liu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, B., Liu, W., Wang, L. et al. CpG Island Methylator Phenotype Associated with Tumor Recurrence in Tumor–Node–Metastasis Stage I Hepatocellular Carcinoma. Ann Surg Oncol 17, 1917–1926 (2010). https://doi.org/10.1245/s10434-010-0921-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-010-0921-7

Keywords

Navigation