Skip to main content
Log in

The Utility of Metaiodobenzylguanidine Single Photon Emission Computed Tomography/Computed Tomography (MIBG SPECT/CT) for the Diagnosis of Pheochromocytoma

  • Endocrine Tumors
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

The enhancement of metaiodobenzylguanidine single photon emission computed tomography (MIBG SPECT) imaging through the addition of CT images fused with SPECT data (coregistered MIBG SPECT/CT imaging) is new technology that allows direct correlation of anatomical and functional information. We hypothesized that MIBG SPECT/CT imaging would provide additional information and improve diagnostic confidence for the radiological localization of a pheochromocytoma, in particular for patients at high risk of multifocal or recurrent disease.

Methods

A retrospective study of all patients investigated by MIBG SPECT/CT at our institution from 2006 to 2008 for a suspected pheochromocytoma was performed. Each case was compared with conventional radiological investigations to determine whether MIBG SPECT/CT was able to improve diagnostic confidence and provide additional diagnostic information compared with conventional imaging alone.

Results

Twenty-two patients had MIBG SPECT/CT imaging for a suspected pheochromocytoma. Fourteen patients had positive MIBG SPECT/CT imaging results correlating with imaging by CT or magnetic resonance imaging in all cases. In six cases, MIBG SPECT/CT provided additional information that altered the original radiological diagnosis. Five patients with a pheochromocytoma-associated germline mutation had multifocal disease excluded by MIBG SPECT/CT. Patients without a germline mutation that had positive biochemistry and a solitary lesion with conventional imaging had no diagnostic improvement with MIBG SPECT/CT imaging.

Conclusions

MIBG SPECT/CT fusion imaging is a sensitive and specific radiological imaging tool for patients suspected to have pheochromocytoma. The particular strengths of MIBG SPECT/CT are detection of local recurrence, small extra-adrenal pheochromocytomas, multifocal tumors, or the presence of metastatic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Whalen RK, Althausen AF, Daniels GH. Extra-adrenal pheochromocytoma. J Urol. 1992;147:1–10.

    CAS  PubMed  Google Scholar 

  2. Neumann HP, Bausch B, McWhinney SR, et al. Germ-line mutations in nonsyndromic pheochromocytoma. N Engl J Med. 2002;346:1459–66.

    Article  CAS  PubMed  Google Scholar 

  3. Amar L, Servais A, Gimenez-Roqueplo AP, et al. Year of diagnosis, features at presentation, and risk of recurrence in patients with pheochromocytoma or secreting paraganglioma. J Clin Endocrinol Metab. 2005;90:2110–6.

    Article  CAS  PubMed  Google Scholar 

  4. Walther MM, Keiser HR, Linehan WM. Pheochromocytoma: evaluation, diagnosis, and treatment. World J Urol. 1999;17:35–9.

    Article  CAS  PubMed  Google Scholar 

  5. Lenders JW, Eisenhofer G, Mannelli M, Pacak K. Pheochromocytoma. Lancet. 2005;366:665–75.

    Article  PubMed  Google Scholar 

  6. Timmers HJ, Kozupa A, Eisenhofer G, et al. Clinical presentations, biochemical phenotypes, and genotype-phenotype correlations in patients with succinate dehydrogenase subunit B-associated pheochromocytomas and paragangliomas. J Clin Endocrinol Metab. 2007;92:779–86.

    Article  CAS  PubMed  Google Scholar 

  7. Brouwers FM, Eisenhofer G, Tao JJ, et al. High frequency of SDHB germline mutations in patients with malignant catecholamine-producing paragangliomas: implications for genetic testing. J Clin Endocrinol Metab. 2006;91:4505–9.

    Article  CAS  PubMed  Google Scholar 

  8. Greenblatt DY, Shenker Y, Chen H. The utility of metaiodobenzylguanidine (MIBG) scintigraphy in patients with pheochromocytoma. Ann Surg Oncol. 2008;15:900–5.

    Article  PubMed  Google Scholar 

  9. Miskulin J, Shulkin BL, Doherty GM, et al. Is preoperative iodine 123 meta-iodobenzylguanidine scintigraphy routinely necessary before initial adrenalectomy for pheochromocytoma? Surgery. 2003;134:918–22; discussion 922–3.

    Article  PubMed  Google Scholar 

  10. Bhatia KS, Ismail MM, Sahdev A, et al. 123I-metaiodobenzylguanidine (MIBG) scintigraphy for the detection of adrenal and extra-adrenal pheochromocytomas: CT and MRI correlation. Clin Endocrinol (Oxf). 2008;69:181–8.

    Article  Google Scholar 

  11. Mihai R, Gleeson F, Roskell D, et al. Routine preoperative (123)I-MIBG scintigraphy for patients with pheochromocytoma is not necessary. Langenbecks Arch Surg. 2008;393:725–7.

    Article  PubMed  Google Scholar 

  12. Wiseman GA, Pacak K, O’Dorisio MS, et al. Usefulness of 123I-MIBG scintigraphy in the evaluation of patients with known or suspected primary or metastatic pheochromocytoma or paraganglioma: results from a prospective multicenter trial. J Nucl Med. 2009;50:1448–54.

    Article  CAS  PubMed  Google Scholar 

  13. Rozovsky K, Koplewitz BZ, Krausz Y, et al. Added value of SPECT/CT for correlation of MIBG scintigraphy and diagnostic CT in neuroblastoma and pheochromocytoma. AJR Am J Roentgenol. 2008;190:1085–90.

    Article  PubMed  Google Scholar 

  14. Strobel K, Burger C, Schneider P, et al. MIBG-SPECT/CT-angiography with 3-D reconstruction of an extra-adrenal pheochromocytoma with dissection of an aortic aneurysm. Eur J Nucl Med Mol Imaging. 2007;34:150.

    Article  PubMed  Google Scholar 

  15. Maurea S, Cuocolo A, Reynolds JC, et al. Diagnostic imaging in patients with paragangliomas. Computed tomography, magnetic resonance and MIBG scintigraphy comparison. Q J Nucl Med. 1996;40:365–71.

    CAS  PubMed  Google Scholar 

  16. Ilias I, Pacak K. Current approaches and recommended algorithm for the diagnostic localization of pheochromocytoma. J Clin Endocrinol Metab. 2004;89:479–91.

    Article  CAS  PubMed  Google Scholar 

  17. Bomanji J, Levison DA, Flatman WD, et al. Uptake of iodine-123 MIBG by pheochromocytomas, paragangliomas, and neuroblastomas: a histopathological comparison. J Nucl Med. 1987;28:973–8.

    CAS  PubMed  Google Scholar 

  18. Wieland DM, Wu J, Brown LE, et al. Radiolabeled adrenergi neuron-blocking agents: adrenomedullary imaging with [131I]iodobenzylguanidine. J Nucl Med. 1980;21:349–53.

    CAS  PubMed  Google Scholar 

  19. Hoefnagel CA, Voute PA, de Kraker J, Marcuse HR. Radionuclide diagnosis and therapy of neural crest tumors using iodine-131 metaiodobenzylguanidine. J Nucl Med. 1987;28:308–14.

    CAS  PubMed  Google Scholar 

  20. Fischer M, Kamanabroo D, Sonderkamp H, Proske T. Scintigraphic imaging of carcinoid tumours with 131I-metaiodobenzylguanidine. Lancet. 1984;2:165.

    Article  CAS  PubMed  Google Scholar 

  21. Evans AE, D’Angio GJ, Knudson AG, Seeger RC (ed). Advances in neuroblastomas research. New York: Alan R. Liss; 1988.

  22. Lumbroso JD, Guermazi F, Hartmann O, et al. Meta-iodobenzylguanidine (mIBG) scans in neuroblastoma: sensitivity and specificity, a review of 115 scans. Prog Clin Biol Res. 1988;271:689–705.

    CAS  PubMed  Google Scholar 

  23. Roach PJ. Combining structure and function: the future of medical imaging. Int Med J. 2005:577–9.

  24. Castaldi P, Rufini V, Treglia G, et al. Impact of 111In-DTPA-octreotide SPECT/CT fusion images in the management of neuroendocrine tumours. Radiol Med. 2008;113:1056–67.

    Article  CAS  PubMed  Google Scholar 

  25. Eisenhofer G, Siegert G, Kotzerke J, et al. Current progress and future challenges in the biochemical diagnosis and treatment of pheochromocytomas and paragangliomas. Horm Metab Res. 2008;40:329–37.

    Article  CAS  PubMed  Google Scholar 

  26. Hickman PE, Leong M, Chang J, et al. Plasma free metanephrines are superior to urine and plasma catecholamines and urine catecholamine metabolites for the investigation of pheochromocytoma. Pathology. 2009;41:173–7.

    Article  CAS  PubMed  Google Scholar 

  27. Yu R. Ordering pattern and performance of biochemical tests for diagnosing pheochromocytoma from 2000 to 2008. Endocr Pract. 2009:1–27.

  28. Manger WM, Gifford RD (eds). Clinical and experimental pheochromocytoma. Cambridge: Blackwell Science; 1996.

  29. Alderazi Y, Yeh MW, Robinson BG, et al. Pheochromocytoma: current concepts. Med J Aust. 2005;183:201–4.

    PubMed  Google Scholar 

  30. Manger WM. An overview of pheochromocytoma: history, current concepts, vagaries, and diagnostic challenges. Ann N Y Acad Sci. 2006;1073:1–20.

    Article  CAS  PubMed  Google Scholar 

  31. Abe M, Orita Y, Nakashima Y, Nakamura M. Hypertensive crisis induced by metoclopramide in patient with pheochromocytoma. Angiology. 1984;35:122–8.

    Article  CAS  PubMed  Google Scholar 

  32. Lawrence AM. Glucagon provocative test for pheochromocytoma. Ann Intern Med. 1967;66:1091–6.

    CAS  PubMed  Google Scholar 

  33. Eriksson B, Bergstrom M, Sundin A, et al. The role of PET in localization of neuroendocrine and adrenocortical tumors. Ann N Y Acad Sci. 2002;970:159–69.

    Article  CAS  PubMed  Google Scholar 

  34. Rufini V, Calcagni ML, Baum RP. Imaging of neuroendocrine tumors. Semin Nucl Med. 2006;36:228–247.

    Article  PubMed  Google Scholar 

  35. Ilias I, Pacak K. Anatomical and functional imaging of metastatic pheochromocytoma. Ann N Y Acad Sci. 2004;1018:495–504.

    Article  CAS  PubMed  Google Scholar 

  36. Gross MD, Gauger PG, Djekidel M, Rubello D. The role of PET in the surgical approach to adrenal disease. Eur J Surg Oncol. 2009;35(11):1137–45.

    CAS  Google Scholar 

  37. Nakatani T, Hayama T, Uchida J, et al. Diagnostic localization of extra-adrenal pheochromocytoma: comparison of (123)I-MIBG imaging and (131)I-MIBG imaging. Oncol Rep. 2002;9:1225–7.

    PubMed  Google Scholar 

  38. Shapiro B, Gross MD. Radiochemistry, biochemistry, and kinetics of 131I-metaiodobenzylguanidine (MIBG) and 123I-MIBG: clinical implications of the use of 123I-MIBG. Med Pediatr Oncol. 1987;15:170–7.

    Article  CAS  PubMed  Google Scholar 

  39. Ikekubo K, Hino M, Ootsuka H, et al. Detection of neural crest tumors by 123I-MIBG scintigraphy. Kaku Igaku. 1994;31:1357–64.

    CAS  PubMed  Google Scholar 

  40. Anderson GS, Fish S, Nakhoda K, et al. Comparison of I-123 and I-131 for whole-body imaging after stimulation by recombinant human thyrotropin: a preliminary report. Clin Nucl Med. 2003;28:93–6.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

GMR is a recipient of the National Health and Medical Research Council (NHMRC, Australia) Postgraduate Research Scholarship, the Cancer Institute of New South Wales (CINSW, Australia) Postgraduate Scholarship, and the Royal Australasian College of Surgeons (RACS) Surgeon Scientist Scholarship.

Previous Communication:

Oral presentation to the Conjoint Annual Scientific Congress, Hong Kong, May 2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goswin Y. Meyer-Rochow FRACS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer-Rochow, G.Y., Schembri, G.P., Benn, D.E. et al. The Utility of Metaiodobenzylguanidine Single Photon Emission Computed Tomography/Computed Tomography (MIBG SPECT/CT) for the Diagnosis of Pheochromocytoma. Ann Surg Oncol 17, 392–400 (2010). https://doi.org/10.1245/s10434-009-0850-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-009-0850-5

Keywords

Navigation