Skip to main content

Advertisement

Log in

Association Analysis of Wnt Pathway Genes on Prostate-Specific Antigen Recurrence After Radical Prostatectomy

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Approximately one-third of prostate cancer (PCa) patients show biochemical failure after radical prostatectomy (RP) and are prone to develop metastasis with significant mortality. Although aberrant Wnt/β-catenin (CTNNB1) signaling has been observed in numerous types of human cancers, including PCa, to our knowledge there is currently no information on the role of Wnt signaling gene polymorphisms in PCa.

Methods

We comprehensively studied the contribution of genetic variations in CTNNB1 and adenomatous polyposis coli (APC), one of the key genes encoding the CTNNB1 destruction complex, to PCa risk and prognosis after RP using a hospital-based case–control study. We selected and genotyped 13 tagged single-nucleotide polymorphisms (tSNP) to predict common variants across entire APC and CTNNB1 genes in 307 patients with clinically localized PCa who received RP and 371 unaffected controls.

Results

Four tSNPs (rs3846716, rs2431238, rs41115, and rs565453) and a specific haplotype (GTAAGA) in the APC tumor suppressor gene were associated with a 0.57- to 0.71-fold lower risk of localized PCa. The association of tSNPs with prostate-specific antigen (PSA) recurrence in PCa patients was then analyzed by Kaplan–Meier analysis and Cox regression model. Interestingly, we found that the APC rs3846716 GA/AA genotypes were also significantly associated with poorer PSA-free survival (log-rank test, P = 0.037) compared with the GG genotype.

Conclusions

This is the first report documenting the potential prognostic role of the APC rs3846716 GA/AA genotype on PSA recurrence after RP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Han M, Partin AW, Pound CR, Epstein JI, Walsh PC. Long-term biochemical disease-free and cancer-specific survival following anatomic radical retropubic prostatectomy. The 15-year Johns Hopkins experience. Urol Clin North Am. 2001;28:555–65.

    Article  CAS  PubMed  Google Scholar 

  2. Roehl KA, Han M, Ramos CG, Antenor JA, Catalona WJ. Cancer progression and survival rates following anatomical radical retropubic prostatectomy in 3,478 consecutive patients: long-term results. J Urol. 2004;172:910–4.

    Article  PubMed  Google Scholar 

  3. Humphrey PA. Gleason grading and prognostic factors in carcinoma of the prostate. Mod Pathol. 2004;17:292–306.

    Article  PubMed  Google Scholar 

  4. Bierie B, Nozawa M, Renou JP, Shillingford JM, Morgan F, Oka T, et al. Activation of beta-catenin in prostate epithelium induces hyperplasias and squamous transdifferentiation. Oncogene. 2003;22:3875–87.

    Article  CAS  PubMed  Google Scholar 

  5. Chesire DR, Ewing CM, Gage WR, Isaacs WB. In vitro evidence for complex modes of nuclear beta-catenin signaling during prostate growth and tumorigenesis. Oncogene. 2002;21:2679–94.

    Article  CAS  PubMed  Google Scholar 

  6. Gounari F, Signoretti S, Bronson R, Klein L, Sellers WR, Kum J, et al. Stabilization of beta-catenin induces lesions reminiscent of prostatic intraepithelial neoplasia, but terminal squamous transdifferentiation of other secretory epithelia. Oncogene. 2002;21:4099–107.

    Article  CAS  PubMed  Google Scholar 

  7. Beroud C, Soussi T. APC gene: database of germline and somatic mutations in human tumors and cell lines. Nucleic Acids Res. 1996;24:121–4.

    Article  CAS  PubMed  Google Scholar 

  8. Barker N, Clevers H. Mining the Wnt pathway for cancer therapeutics. Nat Rev Drug Discov. 2006;5:997–1014.

    Article  CAS  PubMed  Google Scholar 

  9. Chesire DR, Ewing CM, Sauvageot J, Bova GS, Isaacs WB. Detection and analysis of beta-catenin mutations in prostate cancer. Prostate. 2000;45:323–34.

    Article  CAS  PubMed  Google Scholar 

  10. Gerstein AV, Almeida TA, Zhao G, Chess E, Shih Ie M, Buhler K, et al. APC/CTNNB1 (beta-catenin) pathway alterations in human prostate cancers. Genes Chromosomes Cancer. 2002;34:9-16.

    Article  CAS  PubMed  Google Scholar 

  11. Voeller HJ, Truica CI, Gelmann EP. Beta-catenin mutations in human prostate cancer. Cancer Res. 1998;58:2520–3.

    CAS  PubMed  Google Scholar 

  12. Poynter JN, Cooney KA, Bonner JD, White KA, Tomsho LP, Rennert G, et al. APC I1307K and the risk of prostate cancer. Cancer Epidemiol Biomarkers Prev. 2006;15:468–73.

    Article  CAS  PubMed  Google Scholar 

  13. Huang SP, Chou YH, Chang WS, Wu MT, Yu CC, Wu T, et al. Androgen receptor gene polymorphism and prostate cancer in Taiwan. J Formos Med Assoc. 2003;102:680–6.

    CAS  PubMed  Google Scholar 

  14. Huang SP, Chou YH, Wayne Chang WS, Wu MT, Chen YY, Yu CC, et al. Association between vitamin D receptor polymorphisms and prostate cancer risk in a Taiwanese population. Cancer Lett. 2004;207:69–77.

    Article  CAS  PubMed  Google Scholar 

  15. Huang SP, Huang CY, Wang JS, Liu CC, Pu YS, Yu HJ, et al. Prognostic significance of p53 and X-ray repair cross-complementing group 1 polymorphisms on prostate-specific antigen recurrence in prostate cancer post radical prostatectomy. Clin Cancer Res. 2007;13:6632–8.

    Article  CAS  PubMed  Google Scholar 

  16. Huang SP, Huang CY, Wu WJ, Pu YS, Chen J, Chen YY, et al. Association of vitamin D receptor FokI polymorphism with prostate cancer risk, clinicopathological features and recurrence of prostate specific antigen after radical prostatectomy. Int J Cancer. 2006;119:1902–7.

    Article  CAS  PubMed  Google Scholar 

  17. Huang SP, Wu WJ, Chang WS, Wu MT, Chen YY, Chen YJ, et al. p53 Codon 72 and p21 codon 31 polymorphisms in prostate cancer. Cancer Epidemiol Biomarkers Prev. 2004;13:2217–24.

    CAS  PubMed  Google Scholar 

  18. Barry MJ, Fowler FJ, Jr, O’Leary MP, Bruskewitz RC, Holtgrewe HL, Mebust WK, et al. The American Urological Association symptom index for benign prostatic hyperplasia. The Measurement Committee of the American Urological Association. J Urol. 1992;148:1549–57 (discussion 1564).

    CAS  PubMed  Google Scholar 

  19. Gleason DF, Mellinger GT. Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging. J Urol. 1974;111:58–64.

    CAS  PubMed  Google Scholar 

  20. Freedland SJ, Sutter ME, Dorey F, Aronson WJ. Defining the ideal cutpoint for determining PSA recurrence after radical prostatectomy. Prostate-specific antigen. Urology. 2003;61:365–9.

    Google Scholar 

  21. Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, et al. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007;449:851–61.

    Article  CAS  PubMed  Google Scholar 

  22. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263–5.

    Article  CAS  PubMed  Google Scholar 

  23. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, et al. The structure of haplotype blocks in the human genome. Science. 2002;296:2225–9.

    Article  CAS  PubMed  Google Scholar 

  24. de Bakker PI, Yelensky R, Pe’er I, Gabriel SB, Daly MJ, Altshuler D. Efficiency and power in genetic association studies. Nat Genet. 2005;37:1217–23.

    Article  PubMed  Google Scholar 

  25. Li SS, Khalid N, Carlson C, Zhao LP. Estimating haplotype frequencies and standard errors for multiple single nucleotide polymorphisms. Biostatistics. 2003;4:513–22.

    Article  PubMed  Google Scholar 

  26. Zhao LP, Li SS, Khalid N. A method for the assessment of disease associations with single-nucleotide polymorphism haplotypes and environmental variables in case-control studies. Am J Hum Genet. 2003;72:1231–50.

    Article  CAS  PubMed  Google Scholar 

  27. Truica CI, Byers S, Gelmann EP. Beta-catenin affects androgen receptor transcriptional activity and ligand specificity. Cancer Res. 2000;60:4709–13.

    CAS  PubMed  Google Scholar 

  28. Freedland SJ, Humphreys EB, Mangold LA, Eisenberger M, Dorey FJ, Walsh PC, et al. Risk of prostate cancer-specific mortality following biochemical recurrence after radical prostatectomy. JAMA. 2005;294:433–9.

    Article  CAS  PubMed  Google Scholar 

  29. Freedland SJ, Humphreys EB, Mangold LA, Eisenberger M, Partin AW. Time to prostate specific antigen recurrence after radical prostatectomy and risk of prostate cancer specific mortality. J Urol. 2006;176:1404–8.

    Article  PubMed  Google Scholar 

  30. Yeager M, Orr N, Hayes RB, Jacobs KB, Kraft P, Wacholder S, et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet. 2007;39:645–9.

    Article  CAS  PubMed  Google Scholar 

  31. Bostwick DG, Burke HB, Djakiew D, Euling S, Ho SM, Landolph J, et al. Human prostate cancer risk factors. Cancer. 2004;101:2371–490.

    Article  CAS  PubMed  Google Scholar 

  32. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics, 2007. CA Cancer J Clin. 2007;57:43–66.

    Article  PubMed  Google Scholar 

  33. Pu YS. Prostate cancer in Taiwan: epidemiology and risk factors. Int J Androl. 2000;23 Suppl 2:34–6.

    Article  PubMed  Google Scholar 

  34. Wang P, Dai M, Xuan W, McEachin RC, Jackson AU, Scott LJ, et al. SNP Function Portal: a web database for exploring the function implication of SNP alleles. Bioinformatics. 2006;22:e523–9.

    Article  CAS  PubMed  Google Scholar 

  35. Berta P, Hawkins JR, Sinclair AH, Taylor A, Griffiths BL, Goodfellow PN, et al. Genetic evidence equating SRY and the testis-determining factor. Nature. 1990;348:448–50.

    Article  CAS  PubMed  Google Scholar 

  36. Werner MH, Huth JR, Gronenborn AM, Clore GM. Molecular basis of human 46X,Y sex reversal revealed from the three-dimensional solution structure of the human SRY-DNA complex. Cell. 1995;81:705–14.

    Article  CAS  PubMed  Google Scholar 

  37. Dubin RA, Ostrer H. Sry is a transcriptional activator. Mol Endocrinol. 1994;8:1182–92.

    Article  CAS  PubMed  Google Scholar 

  38. Yuan X, Lu ML, Li T, Balk SP. SRY interacts with and negatively regulates androgen receptor transcriptional activity. J Biol Chem. 2001;276:46647–54.

    Article  CAS  PubMed  Google Scholar 

  39. Perinchery G, Sasaki M, Angan A, Kumar V, Carroll P, Dahiya R. Deletion of Y-chromosome specific genes in human prostate cancer. J Urol. 2000;163:1339–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We would like to thank National Genotyping Center of National Research Program for Genomic Medicine, National Science Council (NSC), Taiwan, for their technical support. This work was supported by NSC Grant NSC-96-2321-B-039-005-MY2, NSC-96-2314-B-037-012-MY3, and China Medical University grant CMU97-183.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo-Ying Bao PhD.

Additional information

S.-P. Huang and B.-Y. Bao contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 721 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, SP., Ting, WC., Chen, LM. et al. Association Analysis of Wnt Pathway Genes on Prostate-Specific Antigen Recurrence After Radical Prostatectomy. Ann Surg Oncol 17, 312–322 (2010). https://doi.org/10.1245/s10434-009-0698-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-009-0698-8

Keywords

Navigation