Skip to main content

Advertisement

Log in

Correlation Between Connexin 26 Expression and Poor Prognosis of Esophageal Squamous Cell Carcinoma

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Failure of gap junction formation affects the development of various types of cancer. We aimed to clarify the clinicopathologic outcome and prognostic significance of connexin (Cx) 26 in human esophageal squamous cell carcinoma (ESCC).

Methods

Immunohistochemical staining for Cx26 was performed on surgical specimens obtained from 123 patients with ESCC.

Results

There was no positive staining for Cx26-specific expression in normal esophageal squamous cells. Primary ESCC with Cx26-positive expression was detected in the cytoplasm of cancer cell nests in 60 cases. Cx26 expression was correlated with N (lymph node metastasis, P = 0.014) and the number of metastatic lymph nodes (P = 0.047). The 5-year survival rates of ESCC patients with Cx26-positive expression were significantly lower than those with Cx26-negative expression (positive, 39.7%; negative, 65.7%; P = 0.007). By multivariate analysis, tumor–node–metastasis (TNM) clinical classification (T, P < 0.001; N, P = 0.002; M, P = 0.046) and Cx26 (P = 0.024) were independent prognosis predictors of ESCC.

Conclusions

These results suggest that abnormal expression of Cx26 participates in the progress of ESCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Charles AC, Naus CC, Zhu D, Kidder GM, Dirksen ER, Sanderson MJ. Intercellular calcium signaling via gap junctions in glioma cells. J Cell Biol. 1992;118:195–201.

    Article  PubMed  CAS  Google Scholar 

  2. Willecke K, Eiberger J, Degen J, Eckardt D, Romualdi A, Güldenagel M, et al. Structural and functional diversity of connexin genes in the mouse and human genome. Biol Chem. 2002;383:725–37.

    Article  PubMed  CAS  Google Scholar 

  3. Bruzzone R, White TW, Paul DL. Connections with connexins: the molecular basis of direct intercellular signaling. Eur J Biochem. 1996;238:1–27.

    Article  PubMed  CAS  Google Scholar 

  4. Loewenstein WR, Kanno Y. Intercellular communication and the control of tissue growth: lack of communication between cancer cells. Nature. 1966;209:1248–9.

    Article  PubMed  CAS  Google Scholar 

  5. Loewenstein WR, Kanno Y. Intercellular communication and tissue growth. I. Cancerous growth. J Cell Biol. 1967;33:225–34.

    CAS  Google Scholar 

  6. Kamibayashi Y, Oyamada Y, Mori M, Oyamada M. Aberrant expression of gap junction proteins (connexins) is associated with tumor progression during multistage mouse skin carcinogenesis in vivo. Carcinogenesis. 1995;16:1287–97.

    Article  PubMed  CAS  Google Scholar 

  7. Jinn Y, Ichioka M, Marumo F. Expression of connexin32 and connexin43 gap junction proteins and E-cadherin in human lung cancer. Cancer Lett. 1998;127:161–9.

    Article  PubMed  CAS  Google Scholar 

  8. Mourelle M, Casellas F, Guarner F, Salas A, Riveros-Moreno V, Moncada S, et al. Induction of nitric oxide synthase in colonic smooth muscle from patients with toxic megacolon. Gastroenterology. 1995;109:1497–502.

    Article  PubMed  CAS  Google Scholar 

  9. Krutovskikh V, Mazzoleni G, Mironov N, Omori Y, Aguelon AM, Mesnil M, et al. Altered homologous and heterologous gap-junctional intercellular communication in primary human liver tumors associated with aberrant protein localization but not gene mutation of connexin 32. Int J Cancer. 1994;56:87–94.

    Article  PubMed  CAS  Google Scholar 

  10. Huang RP, Hossain MZ, Sehgal A, Boynton AL. Reduced connexin43 expression in high-grade human brain glioma cells. J Surg Oncol. 1999;70:21–4.

    Article  PubMed  CAS  Google Scholar 

  11. Tsai H, Werber J, Davia MO, Edelman M, Tanaka KE, Melman A, et al. Reduced connexin 43 expression in high grade, human prostatic adenocarcinoma cells. Biochem Biophys Res Commun. 1996;227:64–9.

    Article  PubMed  CAS  Google Scholar 

  12. Jamieson S, Going JJ, D’Arcy R, George WD. Expression of gap junction proteins connexin 26 and connexin 43 in normal human breast and in breast tumours. J Pathol. 1998;184:37–43.

    Article  PubMed  CAS  Google Scholar 

  13. Oyamada M, Krutovskikh VA, Mesnil M, Partensky C, Berger F, Yamasaki H. Aberrant expression of gap junction gene in primary human hepatocellular carcinomas: increased expression of cardiac-type gap junction gene connexin 43. Mol Carcinog. 1990;3:273–8.

    Article  PubMed  CAS  Google Scholar 

  14. Wilgenbus KK, Kirkpatrick CJ, Knuechel R, Willecke K, Traub O. Expression of Cx26, Cx32 and Cx43 gap junction proteins in normal and neoplastic human tissues. Int J Cancer. 1992;51:522–9.

    Article  PubMed  CAS  Google Scholar 

  15. Ito A, Koma Y, Uchino K, Okada T, Ohbayashi C, Tsubota N. Increased expression of connexin 26 in the invasive component of lung squamous cell carcinoma: significant correlation with poor prognosis. Cancer Lett. 2006;234:239–48.

    Article  PubMed  CAS  Google Scholar 

  16. Eghbali B, Kessler JA, Reid LM, Roy C, Spray DC. Involvement of gap junctions in tumorigenesis: transfection of tumor cells with connexin 32 cDNA retards growth in vivo. Proc Natl Acad Sci USA. 1991;88:10701–5.

    Article  PubMed  CAS  Google Scholar 

  17. Huang RP, Fan Y, Hossain MZ, Peng A, Zeng ZL, Boynton AL. Reversion of the neoplastic phenotype of human glioblastoma cells by connexin 43 (cx43). Cancer Res. 1998;58:5089–96.

    PubMed  CAS  Google Scholar 

  18. Mesnil M, Krutovskikh V, Piccoli C, Elfgang C, Traub O, Willecke K, et al. Negative growth control of HeLa cells by connexin genes: connexin species specificity. Cancer Res. 1995;55:629–39.

    PubMed  CAS  Google Scholar 

  19. Aasen T, Hodgins MB, Edward M, Graham SV. The relationship between connexins, gap junctions, tissue architecture and tumour invasion, as studied in a novel in vitro model of HPV-16-associated cervical cancer progression. Oncogene. 2003;22:7969–80.

    Article  PubMed  CAS  Google Scholar 

  20. Sobin LH, Wittekind CH. TNM classification of malignant tumours, 6th ed. New Jersey: Wiley, Hoboken; 2002.

    Google Scholar 

  21. Fukai Y, Masuda N, Kato H, Fukuchi M, Miyazaki T, Nakajima M, et al. Correlation between laminin-5 gamma2 chain and epidermal growth factor receptor expression in esophageal squamous cell carcinomas. Oncology. 2005;69:71–80.

    Article  PubMed  CAS  Google Scholar 

  22. Kato H, Yoshikawa M, Miyazaki T, Nakajima M, Fukai Y, Masuda N, et al. Expression of vascular endothelial growth factor (VEGF) and its receptors (Flt-1 and Flk-1) in esophageal squamous cell carcinoma. Anticancer Res. 2002;22:3977–84.

    PubMed  CAS  Google Scholar 

  23. Oyamada Y, Oyamada M, Fusco A, Yamasaki H. Aberrant expression, function and localization of connexins in human esophageal carcinoma cell lines with different degrees of tumorigenicity. J Cancer Res Clin Oncol. 1994;120:445–53.

    Article  PubMed  CAS  Google Scholar 

  24. Loncarek J, Yamasaki H, Levillain P, Milinkevitch S, Mesnil M. The expression of the tumor suppressor gene connexin 26 is not mediated by methylation in human esophageal cancer cells. Mol Carcinog. 2003;36:74–81.

    Article  PubMed  CAS  Google Scholar 

  25. Ezumi K, Yamamoto H, Murata K, Higashiyama M, Damdinsuren B, Nakamura Y, et al. Aberrant expression of connexin 26 is associated with lung metastasis of colorectal cancer. Clin Cancer Res. 2008;14:677–84.

    Article  PubMed  CAS  Google Scholar 

  26. Yamasaki H, Naus CC. Role of connexin genes in growth control. Carcinogenesis. 1996;17:1199–213.

    Article  PubMed  CAS  Google Scholar 

  27. Omori Y, Zaidan Dagli ML, Yamakage K, Yamasaki H. Involvement of gap junctions in tumor suppression: analysis of genetically-manipulated mice. Mutat Res. 2001;477:191–6.

    PubMed  CAS  Google Scholar 

  28. Liotta LA, Steeg PS, Stetler-Stevenson WG. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell. 1991;64:327–36.

    Article  PubMed  CAS  Google Scholar 

  29. Asamoto M, Toriyama-Baba T, Krutovskikh V, Cohen SM, Tsuda H. Enhanced tumorigenicity of rat bladder squamous cell carcinoma cells after abrogation of gap junctional intercellular communication. Jpn J Cancer Res. 1998;89:481–6.

    PubMed  CAS  Google Scholar 

  30. Eghbali B, Kessler JA, Reid LM, Roy C, Spray DC. Involvement of gap junctions in tumorigenesis: transfection of tumor cells with connexin 32 cDNA retards growth in vivo. Proc Natl Acad Sci USA. 1991;88:10701–5.

    Article  PubMed  CAS  Google Scholar 

  31. Muramatsu A, Iwai M, Morikawa T, Tanaka S, Mori T, Harada Y, et al. Influence of transfection with connexin 26 gene on malignant potential of human hepatoma cells. Carcinogenesis. 2002;23:351–8.

    Article  PubMed  CAS  Google Scholar 

  32. Tanaka M, Grossman HB. Connexin 26 gene therapy of human bladder cancer: induction of growth suppression, apoptosis, and synergy with cisplatin. Hum Gene Ther. 2001;12:2225–36.

    Article  PubMed  CAS  Google Scholar 

  33. Morris VL, Schmidt EE, MacDonald IC, Groom AC, Chambers AF. Sequential steps in hematogenous metastasis of cancer cells studied by in vivo videomicroscopy. Invasion Metastasis. 1997;17:281–96.

    PubMed  CAS  Google Scholar 

  34. Tate AW, Lung T, Radhakrishnan A, Lim SD, Lin X, Edlund M. Changes in gap junctional connexin isoforms during prostate cancer progression. Prostate. 2006;66:19–31.

    Article  PubMed  CAS  Google Scholar 

  35. Zhang W, Couldwell WT, Simard MF, Song H, Lin JH, Nedergaard M. Direct gap junction communication between malignant glioma cells and astrocytes. Cancer Res. 1999;59:1994–2003.

    PubMed  CAS  Google Scholar 

  36. Lin JH, Takano T, Cotrina ML, Arcuino G, Kang J, Liu S, et al. Connexin 43 enhances the adhesivity and mediates the invasion of malignant glioma cells. J Neurosci. 2002;22:4302–11.

    PubMed  CAS  Google Scholar 

  37. Zhang ZQ, Hu Y, Wang BJ, Lin ZX, Naus CC, Nicholson BJ. Effective asymmetry in gap junctional intercellular communication between populations of human normal lung fibroblasts and lung carcinoma cells. Carcinogenesis. 2004;25:473–82.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We wish to thank Dr. Keisuke Ieta, Dr. Ryokuhei Manda, Dr. Hitoshi Ojima, and Dr. Katsuhiko Tsukada for their valuable cooperation, and Mr. Takaichi Aoyagi for excellent technical assistance, and Ms. Sachiko Shigoka, Ms. Akie Takei, Ms. Tomoko Yano, Ms. Hideko Emura, Ms. Midori Ohno, Ms. Tomomi Yoshida, Ms. Tomoko Takahashi, and Ms. Yukie Saito for their excellent secretarial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takanori Inose MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inose, T., Kato, H., Kimura, H. et al. Correlation Between Connexin 26 Expression and Poor Prognosis of Esophageal Squamous Cell Carcinoma. Ann Surg Oncol 16, 1704–1710 (2009). https://doi.org/10.1245/s10434-009-0443-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-009-0443-3

Keywords

Navigation