Skip to main content

Advertisement

Log in

Flow Cytometric Analysis of DNA Ploidy and S-Phase Fraction in Primary Localized Myxofibrosarcoma: Correlations with Clinicopathological Factors, Skp2 Expression, and Patient Survival

  • Bone and Soft Tissue Sarcomas
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Histological assessment for prognostication of myxofibrosarcomas remains challenging. We previously reported independent prognostic value of Skp2, an oncoprotein promoting S-phase progression (Clin Cancer Res 2006;12:487–98).

Methods

We evaluated S-phase fraction (SPF) and ploidy of myxofibrosarcomas and the association between SPF and Skp2. Flow cytometric findings were analyzed for 75 cases and correlated with clinicopathological factors, Skp2 labeling index (LI), metastasis-free survival (MeFS), and overall survival (OS).

Results

Forty-seven and 28 cases were classified as diploid and nondiploid, respectively. High SPF (≥20%) was detected in 32 of 61 interpretable cases. Skp2 overexpression (LI ≥ 10%) was seen in 36 of 72 cases with scoring. Nondiploidy correlated with higher French Federation of Cancer Centers (FNCLCC) grades (P = .006), remarkable necrosis (P = .010), and Skp2 overexpression (P = .018). Noticeably, SPF was significantly related to Skp2 LI (P < .001, r = .458), FNCLCC grade, American Joint Committee on Cancer stage, and mitotic rate. Nondiploidy predicted shorter OS (P = .0045) and MeFS (P = .0489), whereas SPF ≥ 20% was only associated with inferior MeFS (P = .0252). In multivariate analyses, nondiploidy independently correlated with both OS (P = .020, RR = 3.337) and MeFS (P = .013, RR = 5.780), together with Skp2 overexpression (P = .014 for OS; P = .017 for MeFS) and disease-positive margins (P = .004 for OS; P = .002 for MeFS).

Conclusion

Skp2 promotes S-phase progression in myxofibrosarcomas. SPF provides no independent prognostic usefulness; it is probably overshadowed by Skp2. Nondiploidy adds another predictive value to Skp2 overexpression and disease-positive margins in prognostication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Reference

  1. Huang HY, Lal P, Qin J, et al. Low-grade myxofibrosarcoma: a clinicopathologic analysis of 49 cases treated at a single institution with simultaneous assessment of the efficacy of 3-tier and 4-tier grading systems. Hum Pathol 2004;35:612–21

    Article  PubMed  Google Scholar 

  2. Lin CN, Chou SC, Li CF, et al. Prognostic factors of myxofibrosarcomas: implications of margin status, tumor necrosis, and mitotic rate on survival. J Surg Oncol 2006;93:294–303

    Article  PubMed  Google Scholar 

  3. Mentzel T, Calonje E, Wadden C, et al. Myxofibrosarcoma. Clinicopathologic analysis of 75 cases with emphasis on the low-grade variant. Am J Surg Pathol 1996;20:391–405

    Article  PubMed  CAS  Google Scholar 

  4. Jefford CE, Irminger-Finger I. Mechanisms of chromosome instability in cancers. Crit Rev Oncol Hematol 2006;59:1–14

    Article  PubMed  Google Scholar 

  5. Kops GJ, Weaver BA, Cleveland DW. On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer 2005;5:773–85

    Article  PubMed  CAS  Google Scholar 

  6. Slominski A, Wortsman J, Carlson A, et al. Molecular pathology of soft tissue and bone tumors. A review. Arch Pathol Lab Med 1999;123:1246–59

    PubMed  CAS  Google Scholar 

  7. Borden EC, Baker LH, Bell RS, et al. Soft tissue sarcomas of adults: state of the translational science. Clin Cancer Res 2003;9:1941–56

    PubMed  Google Scholar 

  8. de Alava E. Molecular pathology in sarcomas. Clin Transl Oncol 2007;9:130–44

    Article  PubMed  Google Scholar 

  9. El-Naggar AK, Ayala AG, Abdul-Karim FW, et al. Synovial sarcoma: a DNA flow cytometric study. Cancer 1990;65:2295–300

    Article  PubMed  CAS  Google Scholar 

  10. Moureau-Zabotto L, Bouchet C, Cesari D, et al. Combined flow cytometry determination of S-phase fraction and DNA ploidy is an independent prognostic factor in node-negative invasive breast carcinoma: analysis of a series of 271 patients with stage I and II breast cancer. Breast Cancer Res Treat 2005;91:61–71

    Article  PubMed  CAS  Google Scholar 

  11. Gustafson P, Baldetorp B, Ferno M, et al. Prognostic implications of various models for calculation of S-phase fraction in 259 patients with soft tissue sarcoma. Br J Cancer 1999;79:1205–9

    Article  PubMed  CAS  Google Scholar 

  12. Gustafson P, Ferno M, Akerman M, et al. Flow cytometric S-phase fraction in soft-tissue sarcoma: prognostic importance analysed in 160 patients. Br J Cancer 1997;75:94–100

    PubMed  CAS  Google Scholar 

  13. Collin F, Chassevent A, Bonichon F, et al. Flow cytometric DNA content analysis of 185 soft tissue neoplasms indicates that S-phase fraction is a prognostic factor for sarcomas. French Federation of Cancer Centers (FNCLCC) Sarcoma Group. Cancer 1997;79:2371–9

    Article  PubMed  CAS  Google Scholar 

  14. Huuhtanen RL, Blomqvist CP, Wiklund TA, et al. S-phase fraction of 155 soft tissue sarcomas: correlation with clinical outcome. Cancer 1996;77:1815–22

    Article  PubMed  CAS  Google Scholar 

  15. Huang HY, Kang HY, Li CF, et al. Skp2 overexpression is highly representative of intrinsic biological aggressiveness and independently associated with poor prognosis in primary localized myxofibrosarcomas. Clin Cancer Res 2006;12:487–98

    Article  PubMed  CAS  Google Scholar 

  16. Nakayama KI, Nakayama K. Regulation of the cell cycle by SCF-type ubiquitin ligases. Semin Cell Dev Biol 2005;16:323–33

    Article  PubMed  CAS  Google Scholar 

  17. Sutterluty H, Chatelain E, Marti A, et al. p45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells. Nat Cell Biol 1999;1:207–14

    Article  PubMed  CAS  Google Scholar 

  18. Aoki T, Hisaoka M, Kouho H, et al. Interphase cytogenetic analysis of myxoid soft tissue tumors by fluorescence in situ hybridization and DNA flow cytometry using paraffin-embedded tissue. Cancer 1997;79:284–93

    Article  PubMed  CAS  Google Scholar 

  19. Guillou L, Coindre JM, Bonichon F, et al. Comparative study of the National Cancer Institute and French Federation of Cancer Centers Sarcoma Group grading systems in a population of 410 adult patients with soft tissue sarcoma. J Clin Oncol 1997;15:350–62

    PubMed  CAS  Google Scholar 

  20. American Joint Committee on Cancer. Soft tissue sarcoma. In: Cancer Staging Manual, 6th edition. Philadelphia: Lippincott-Raven; 2002. p. 221–8

  21. Hedley DW, Friedlander ML, Taylor IW, et al. Method for analysis of cellular DNA content of paraffin-embedded pathological material using flow cytometry. J Histochem Cytochem 1983;31:1333–5

    PubMed  CAS  Google Scholar 

  22. Antonescu CR, Elahi A, Humphrey M, et al. Specificity of TLS-CHOP rearrangement for classic myxoid/round cell liposarcoma: absence in predominantly myxoid well-differentiated liposarcomas. J Mol Diagn 2000;2:132–8

    PubMed  CAS  Google Scholar 

  23. Panagopoulos I, Mertens F, Isaksson M, et al. Molecular genetic characterization of the EWS/CHN and RBP56/CHN fusion genes in extraskeletal myxoid chondrosarcoma. Genes Chromosomes Cancer 2002;35:340–52

    Article  PubMed  CAS  Google Scholar 

  24. Sandberg AA. Genetics of chondrosarcoma and related tumors. Curr Opin Oncol 2004;16:342–54

    Article  PubMed  Google Scholar 

  25. Guillou L, Benhattar J, Gengler C, et al. Translocation-positive low-grade fibromyxoid sarcoma: clinicopathologic and molecular analysis of a series expanding the morphologic spectrum and suggesting potential relationship to sclerosing epithelioid fibrosarcoma: a study from the French Sarcoma Group. Am J Surg Pathol 2007;31:1387–402

    Article  PubMed  Google Scholar 

  26. Mertens F, Fletcher CD, Antonescu CR, et al. Clinicopathologic and molecular genetic characterization of low-grade fibromyxoid sarcoma, and cloning of a novel FUS/CREB3L1 fusion gene. Lab Invest 2005;85:408–15

    Article  PubMed  CAS  Google Scholar 

  27. Fukunaga M, Ushigome S, Fukunaga N. Low-grade fibromyxoid sarcoma. Virchows Arch 1996;429:301–3

    PubMed  CAS  Google Scholar 

  28. Kilpatrick SE, Doyon J, Choong PF, et al. The clinicopathologic spectrum of myxoid and round cell liposarcoma. A study of 95 cases. Cancer 1996;77:1450–8

    Article  PubMed  CAS  Google Scholar 

  29. Oliveira AM, Sebo TJ, McGrory JE, et al. Extraskeletal myxoid chondrosarcoma: a clinicopathologic, immunohistochemical, and ploidy analysis of 23 cases. Mod Pathol 2000;13:900–8

    Article  PubMed  CAS  Google Scholar 

  30. Orndal C, Carlen B, Akerman M, et al. Chromosomal abnormality t(9;22)(q22;q12) in an extraskeletal myxoid chondrosarcoma characterized by fine needle aspiration cytology, electron microscopy, immunohistochemistry and DNA flow cytometry. Cytopathology 1991;2:261–70

    Article  PubMed  CAS  Google Scholar 

  31. Weaver BA, Cleveland DW. Does aneuploidy cause cancer? Curr Opin Cell Biol 2006;18:658–67

    Article  PubMed  CAS  Google Scholar 

  32. Weaver BA, Cleveland DW. Aneuploidy: instigator and inhibitor of tumorigenesis. Cancer Res 2007;67:10103–5

    Article  PubMed  CAS  Google Scholar 

  33. Bashir T, Dorrello NV, Amador V, et al. Control of the SCF(Skp2–Cks1) ubiquitin ligase by the APC/C(Cdh1) ubiquitin ligase. Nature 2004;428(6979):190–3

    Article  PubMed  CAS  Google Scholar 

  34. Bashir T, Pagano M. Don’t skip the G1 phase: how APC/CCdh1 keeps SCFSKP2 in check. Cell Cycle 2004;3:850–2

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by the medical research grants from Chang Gung Memorial Hospital (CMRPG83019-II, CMRPG83038) and Chi-Mei Medical Center (CMFHR 9568).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien-Feng Li MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, HY., Huang, WW., Wu, JM. et al. Flow Cytometric Analysis of DNA Ploidy and S-Phase Fraction in Primary Localized Myxofibrosarcoma: Correlations with Clinicopathological Factors, Skp2 Expression, and Patient Survival. Ann Surg Oncol 15, 2239–2249 (2008). https://doi.org/10.1245/s10434-008-9968-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-008-9968-0

Keywords

Navigation