Skip to main content

Advertisement

Log in

Principal Component Analysis, Hierarchical Clustering, and Decision Tree Assessment of Plasma mRNA and Hormone Levels as an Early Detection Strategy for Small Intestinal Neuroendocrine (Carcinoid) Tumors

  • Endocrine Tumors
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Incidence of neuroendocrine tumors (NETs) is increasing (approximately 6%/year), but clinical presentation is nonspecific, resulting in delays in diagnosis (5–7 years; approximately 70% have metastases). This reflects absence of a sensitive plasma marker. The aim of this study is to investigate whether detection of circulating messenger RNA (mRNA) alone or in combination with circulating NET-related hormones and growth factors can detect gastrointestinal NET disease. The small intestinal (SI) NET cell line KRJ-I was used to define the sensitivity of real-time polymerase chain reaction (PCR) for mRNA detection in blood. NSE, Tph-1, and VMAT 2 transcripts were identified from one KRJ-I cell/ml blood. mRNA from the tissue and plasma of SI-NETs (n = 12) and gastric NETs (n = 7), and plasma from healthy controls (n = 9) was isolated and real-time PCR performed. Tph-1 was a specific marker of SI-NETs (58%, p < 0.03) whereas CgA transcripts did not differentiate tumors from controls. Patients with metastatic disease expressed more marker transcripts than localized tumors (75% versus 18%, p < 0.02). Plasma 5-hydroxytryptamine (5-HT), chromogranin A (CgA), ghrelin, and connective tissue growth factor (CTGF) fragments were measured, combined with mRNA levels, and a predictive mathematical model for NET diagnosis developed using decision trees. The sensitivity and specificity to diagnose SI-NETs and gastric NETs were 81.2% and 100%, and 71.4% and 55.6%, respectively. We conclude that mRNA from one NET cell/ml blood can be detected. Circulating plasma Tph-1 is a promising marker gene for SI-NET disease (specificity 100%) while an increased number of marker transcripts (>2) correlated with disease spread. Including NET-related circulating hormones and growth factors in the algorithm increased the sensitivity of detection of SI-NETs from 58 to 82%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cleary S, Phillips JK, Huynh TT, et al. Chromogranin a expression in phaeochromocytomas associated with von Hippel-Lindau syndrome and multiple endocrine neoplasia type 2. Horm Metab Res. 2007;39:876–83.

    Article  PubMed  CAS  Google Scholar 

  2. Gustafsson BI, Kidd M, Modlin IM. Neuroendocrine tumors of the diffuse neuroendocrine system. Curr Opin Oncol. 2008;20:1–12.

    PubMed  Google Scholar 

  3. Perkins GL, Slater ED, Sanders GK, Prichard JG. Serum tumor markers. Am Fam Phys. 2003;68:1075–82.

    Google Scholar 

  4. Visus C, Andres R, Mayordomo JI, et al. Prognostic role of circulating melanoma cells detected by reverse transcriptase-polymerase chain reaction for tyrosinase mRNA in patients with melanoma. Melanoma Res. 2007;17:83–9.

    Article  PubMed  CAS  Google Scholar 

  5. Cristofanilli M, Broglio KR, Guarneri V, et al. Circulating tumor cells in metastatic breast cancer: biologic staging beyond tumor burden. Clin Breast Cancer. 2007;7:471–9.

    Article  PubMed  Google Scholar 

  6. Pfitzenmaier J, Ellis WJ, Hawley S, et al. The detection and isolation of viable prostate-specific antigen positive epithelial cells by enrichment: a comparison to standard prostate-specific antigen reverse transcriptase polymerase chain reaction and its clinical relevance in prostate cancer. Urol Oncol. 2007;25:214–20.

    PubMed  CAS  Google Scholar 

  7. Zitt M, Zitt M, Muller HM, et al. Disseminated tumor cells in peripheral blood: a novel marker for therapy response in locally advanced rectal cancer patients undergoing preoperative chemoradiation. Dis Colon Rectum. 2006;49:1484–91.

    Article  PubMed  Google Scholar 

  8. Wu CH, Lin SR, Hsieh JS, et al. Molecular detection of disseminated tumor cells in the peripheral blood of patients with gastric cancer: evaluation of their prognostic significance. Dis Markers. 2006;22:103–9.

    PubMed  CAS  Google Scholar 

  9. Dawood S, Cristofanilli M. Integrating circulating tumor cell assays into the management of breast cancer. Curr Treat Options Oncol. 2007;8:89–95.

    Article  PubMed  Google Scholar 

  10. Moreno JG, O’Hara SM, Gross S, et al. Changes in circulating carcinoma cells in patients with metastatic prostate cancer correlate with disease status. Urology. 2001;58:386–92.

    Article  PubMed  CAS  Google Scholar 

  11. Allard WJ, Matera J, Miller MC, et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res. 2004;10:6897–904.

    Article  PubMed  Google Scholar 

  12. Anker P, Mulcahy H, Stroun M. Circulating nucleic acids in plasma and serum as a noninvasive investigation for cancer: time for large-scale clinical studies? Int J Cancer. 2003;103:149–52.

    Article  PubMed  CAS  Google Scholar 

  13. Lo KW, Lo YM, Leung SF, et al. Analysis of cell-free Epstein–Barr virus associated RNA in the plasma of patients with nasopharyngeal carcinoma. Clin Chem. 1999;45:1292–4.

    PubMed  CAS  Google Scholar 

  14. Kopreski MS, Benko FA, Kwak LW, Gocke CD. Detection of tumor messenger RNA in the serum of patients with malignant melanoma. Clin Cancer Res. 1999;5:1961–5.

    PubMed  CAS  Google Scholar 

  15. Goebel G, Zitt M, Zitt M, Muller HM. Circulating nucleic acids in plasma or serum (CNAPS) as prognostic and predictive markers in patients with solid neoplasias. Dis Markers. 2005;21:105–20.

    PubMed  CAS  Google Scholar 

  16. YK, Lo YM. Diagnostic developments involving cell-free (circulating) nucleic acids. Clin Chim Acta 2006;363:187–96.

    Article  CAS  Google Scholar 

  17. El-Hefnawy T, Raja S, Kelly L, et al. Characterization of amplifiable, circulating RNA in plasma and its potential as a tool for cancer diagnostics. Clin Chem. 2004;50:564–73.

    Article  PubMed  CAS  Google Scholar 

  18. de Herder WW. Biochemistry of neuroendocrine tumours. Best Pract Res Clin Endocrinol Metab. 2007;21:33–41.

    Article  PubMed  CAS  Google Scholar 

  19. Stridsberg M, Oberg K, Li Q, et al. Measurement of chromogranin A, chromogranin B (secretogranin I), chromogranin C (secretogranin II) and pancreastatin in plasma and urine from patients with carcinoid tumours and endocrine pancreatic tumours. J Endocrinol. 1995;144:49–59.

    Article  PubMed  CAS  Google Scholar 

  20. Kidd M, Modlin IM, Shapiro MD, et al. CTGF, intestinal stellate cells and carcinoid fibrogenesis. World J Gastroenterol. 2007;13:5208–16.

    PubMed  CAS  Google Scholar 

  21. Soga J. Early-stage carcinoids of the gastrointestinal tract: an analysis of 1914 reported cases. Cancer. 2005;103:1587–95.

    Article  PubMed  Google Scholar 

  22. Modlin IM, Kidd M, Pfragner R, et al. The functional characterization of normal and neoplastic human enterochromaffin cells. J Clin Endocrinol Metab. 2006;91:2340–8.

    Article  PubMed  CAS  Google Scholar 

  23. Kidd M, Modlin IM, Mane SM, et al. The role of genetic markers—NAP1L1, MAGE-D2, and MTA1—in defining small-intestinal carcinoid neoplasia. Ann Surg Oncol. 2006;13:253–62.

    Article  PubMed  Google Scholar 

  24. Kidd M, Eick GN, Modlin IM, et al. Further delineation of the continuous human neoplastic enterochromaffin cell line, KRJ-I, and the inhibitory effects of lanreotide and rapamycin. J Mol Endocrinol. 2007;38:181–92.

    Article  PubMed  CAS  Google Scholar 

  25. Kidd M, Nadler B, Mane S, et al. GeneChip, geNorm, and gastrointestinal tumors: novel reference genes for real-time PCR. Physiol Genomics. 2007;30:363–70.

    Article  PubMed  CAS  Google Scholar 

  26. Stridsberg M, Eriksson B, Oberg K, Janson ET. A comparison between three commercial kits for chromogranin A measurements. J Endocrinol 2003;177:337–41.

    Article  PubMed  CAS  Google Scholar 

  27. Patterson M, Murphy KG, le Roux CW, et al. Characterization of ghrelin-like immunoreactivity in human plasma. J Clin Endocrinol Metab. 2005;90:2205–11.

    Article  PubMed  CAS  Google Scholar 

  28. Jaffa AA, Usinger WR, McHenry MB, et al. Connective tissue growth factor and susceptibility to renal and vascular disease risk in type 1 diabetes. J Clin Endocrinol Metab. 2008.

  29. Partek. Partek® genomics suiteTM. St. Louis: Partek Inc.; 2008.

  30. Mohlig M, Floter A, Spranger J, et al. Predicting impaired glucose metabolism in women with polycystic ovary syndrome by decision tree modelling. Diabetologia. 2006;49:2572–9.

    Article  PubMed  CAS  Google Scholar 

  31. Jolliffe IT. Principle component analysis. New York: Springer; 1986.

    Google Scholar 

  32. Zhang H, Singer B. Recursive partitioning in the health sciences (statistics for biology and health). New York: Springer; 1999.

    Google Scholar 

  33. Sciarra A, Monti S, Gentile V, et al. Chromogranin A expression in familial versus sporadic prostate cancer. Urology. 2005;66:1010–4.

    Article  PubMed  Google Scholar 

  34. Bondioni S, Mantovani G, Polentarutti N, et al. Evaluation of proopiomelanocortin mRNA in the peripheral blood from patients with Cushing’s syndrome of different origin. J Endocrinol Invest. 2007;30:828–32.

    PubMed  CAS  Google Scholar 

  35. Fukuda ME, Iwadate Y, Machida T, et al. Cathepsin D is a potential serum marker for poor prognosis in glioma patients. Cancer Res. 2005;65:5190–4.

    Article  PubMed  CAS  Google Scholar 

  36. Cimitan M, Buonadonna A, Cannizzaro R, et al. Somatostatin receptor scintigraphy versus chromogranin A assay in the management of patients with neuroendocrine tumors of different types: clinical role. Ann Oncol. 2003;14:1135–41.

    Article  PubMed  CAS  Google Scholar 

  37. Ross AA, Cooper BW, Lazarus HM, et al. Detection and viability of tumor cells in peripheral blood stem cell collections from breast cancer patients using immunocytochemical and clonogenic assay techniques. Blood. 1993;82:2605–10.

    PubMed  CAS  Google Scholar 

  38. Shaffer DR, Leversha MA, Danila DC, et al. Circulating tumor cell analysis in patients with progressive castration-resistant prostate cancer. Clin Cancer Res. 2007;13:2023–9.

    Article  PubMed  CAS  Google Scholar 

  39. Pfragner R WG, Niederle B, Behmel A, Rinner I, Mandl A, Wawrina F, et al. Establishment of a continuous cell line from a human carcinoid of the small intestine (KRJ-I): characterization and effects of 5-azacytidine on proliferation. Int J Oncol. 1996;8:513–20.

    Google Scholar 

  40. Syversen U, Ramstad H, Gamme K, et al. Clinical significance of elevated serum chromogranin A levels. Scand J Gastroenterol. 2004;39:969–73.

    Article  PubMed  CAS  Google Scholar 

  41. Ford JK, MacCallum RC, Tait M. The application of exploratory factor analysis in applied psychology: a critical review and analysis. Personnel Psychol. 1986;39:291–314.

    Article  Google Scholar 

  42. Domingos P. Occam’s two razors: the sharp and the blunt. In: Agrawal R, Stolorz P (editors) Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining. New York: AAAI; 1998.

    Google Scholar 

  43. Oates T, Jensen D. The Effects of training set size on decision tree complexity. In: Proceedings of the fourteenth international conference on machine learning. Nashville: Morgan Kaufmann; 1997.

  44. Modlin IM, Kidd M, Latich I, et al. Current status of gastrointestinal carcinoids. Gastroenterology. 2005;128:1717–51.

    Article  PubMed  Google Scholar 

  45. Borch K, Ahren B, Ahlman H, et al. Gastric carcinoids: biologic behavior and prognosis after differentiated treatment in relation to type. Ann Surg. 2005;242:64–73.

    Article  PubMed  Google Scholar 

  46. Modlin I, Sachs G. Acid related diseases-biology and treatment. Philadelphia: Lippincott Williams and Wilkins; 2004.

    Google Scholar 

  47. Xi L, Nicastri DG, El-Hefnawy T, et al. Optimal markers for real-time quantitative reverse transcription PCR detection of circulating tumor cells from melanoma, breast, colon, esophageal, head and neck, and lung cancers. Clin Chem. 2007;53:1206–15.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Financial support for these studies comes from NIH R01-CA115285 (I. Modlin).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irvin M. Modlin MD, PhD, DSc, FRCS (Eng & Ed).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Modlin, I.M., Gustafsson, B.I., Drozdov, I. et al. Principal Component Analysis, Hierarchical Clustering, and Decision Tree Assessment of Plasma mRNA and Hormone Levels as an Early Detection Strategy for Small Intestinal Neuroendocrine (Carcinoid) Tumors. Ann Surg Oncol 16, 487–498 (2009). https://doi.org/10.1245/s10434-008-0251-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-008-0251-1

Keywords

Navigation