Tripartite Motif-Containing 29 (TRIM29) Is a Novel Marker for Lymph Node Metastasis in Gastric Cancer

Abstract

Background

Tripartite motif-containing 29 (TRIM29) belongs to the TRIM protein family, which has unique structural characteristics, including multiple zinc finger motifs and a leucine zipper motif. TRIM29, also known as ataxia telangiectasia group D complementing gene, possesses radiosensitivity suppressor functions. Although TRIM29 has been reported to be underexpressed in prostate and breast cancer, its expression in gastrointestinal cancer has not been studied.

Methods

By use of real-time reverse transcriptase–polymerase chain reaction, we analyzed TRIM29 mRNA expression status with respect to various clinicopathological parameters in 124 patients with gastric cancer. An immunohistochemical study was also conducted.

Results

The expression of TRIM29 was far higher in gastric cancer tumor tissue. Increased TRIM29 mRNA expression was markedly associated with such parameters as histological grade, large tumor size, extent of tumor invasion, and lymph node metastasis. In the TRIM29 high-expression group, it was an independent predictor for lymph node metastasis. Furthermore, patients with high TRIM29 mRNA expression showed a far poorer survival rate than those with low TRIM29 mRNA expression.

Conclusions

TRIM29 expression may serve as a good marker of lymph node metastasis in gastric cancer.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.

References

  1. 1.

    Roder DM. The epidemiology of gastric cancer. Gastric Cancer 2002;5(Suppl 1):5–11

    PubMed  Article  Google Scholar 

  2. 2.

    Tominaga S. Epidemiologic trends of stomach cancer in Japan and world. Nippon Rinsho 2001;59(Suppl 4):5–12

    PubMed  Google Scholar 

  3. 3.

    Reymond A, Meroni G, Fantozzi A, et al. The tripartite motif family identifies cell compartments. Embo J 2001;20:2140–51

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Borden KL. RING fingers and B-boxes: zinc-binding protein-protein interaction domains. Biochem Cell Biol 1998;76:351–8

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Reddy BA, Etkin LD, Freemont PS. A novel zinc finger coiled-coil domain in a family of nuclear proteins. Trends Biochem Sci 1992;17:344–5

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Dho SH, Kwon KS. The Ret finger protein induces apoptosis via its RING finger-B box-coiled-coil motif. J Biol Chem 2003;278:31902–8

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Jensen K, Shiels C, Freemont PS. PML protein isoforms and the RBCC/TRIM motif. Oncogene 2001;20:7223–33

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Remboutsika E, Lutz Y, Gansmuller A, Vonesch JL, Losson R, Chambon P. The putative nuclear receptor mediator TIF1alpha is tightly associated with euchromatin. J Cell Sci 1999;112:1671–83

    PubMed  CAS  Google Scholar 

  9. 9.

    Ryan RF, Schultz DC, Ayyanathan K, et al. KAP-1 corepressor protein interacts and colocalizes with heterochromatic and euchromatic HP1 proteins: a potential role for Kruppel-associated box-zinc finger proteins in heterochromatin-mediated gene silencing. Mol Cell Biol 1999;19:4366–78

    PubMed  CAS  Google Scholar 

  10. 10.

    Tezel G, Nagasaka T, Shimono Y, Takahashi M. Differential expression of RET finger protein in testicular germ cell tumors. Pathol Int 2002;52:623–7

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Krutzfeldt M, Ellis M, Weekes DB, et al. Selective ablation of retinoblastoma protein function by the RET finger protein. Mol Cell 2005;18:213–24

    PubMed  Article  Google Scholar 

  12. 12.

    Kapp LN, Painter RB, Yu LC, et al. Cloning of a candidate gene for ataxia-telangiectasia group D. Am J Hum Genet 1992;51:45–54

    PubMed  CAS  Google Scholar 

  13. 13.

    Brzoska PM, Chen H, Zhu Y, et al. The product of the ataxia-telangiectasia group D complementing gene, ATDC, interacts with a protein kinase C substrate and inhibitor. Proc Natl Acad Sci U S A 1995;92:7824–8

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Ernst T, Hergenhahn M, Kenzelmann M, et al. Decrease and gain of gene expression are equally discriminatory markers for prostate carcinoma: a gene expression analysis on total and microdissected prostate tissue. Am J Pathol 2002;160:2169–80

    PubMed  CAS  Google Scholar 

  15. 15.

    Nacht M, Ferguson AT, Zhang W, et al. Combining serial analysis of gene expression and array technologies to identify genes differentially expressed in breast cancer. Cancer Res 1999;59:5464–70

    PubMed  CAS  Google Scholar 

  16. 16.

    Japanese Research Society for Gastric Cancer. Japanese Classification of Gastric Carcinoma. 13th ed. Tokyo: Kanehara, 1999

    Google Scholar 

  17. 17.

    Utsunomiya T, Okamoto M, Hashimoto M, et al. A gene-expression signature can quantify the degree of hepatic fibrosis in the rat. J Hepatol 2004;41:399–406

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Utsunomiya T, Hara Y, Kataoka A, et al. Cystatin-like metastasis-associated protein mRNA expression in human colorectal cancer is associated with both liver metastasis and patient survival. Clin Cancer Res 2002;8:2591–4

    PubMed  CAS  Google Scholar 

  19. 19.

    Utsunomiya T, Inoue H, Taguchi K, Shimada M, Sugimachi K, Mori M. G protein gamma 7 expression as a new clinicopathological marker in patients with intrahepatic cholangiocarcinoma. Arch Surg 2002;137:181–5

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Masuda TA, Inoue H, Nishida K, et al. Cyclin-dependent kinase 1 gene expression is associated with poor prognosis in gastric carcinoma. Clin Cancer Res 2003;9:5693–8

    PubMed  CAS  Google Scholar 

  21. 21.

    Ogawa K, Utsunomiya T, Mimori K, et al. Clinical significance of elongation factor-1 delta mRNA expression in oesophageal carcinoma. Br J Cancer 2004;91:282–6

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Ohmachi T, Tanaka F, Mimori K, Inoue H, Yanaga K, Mori M. Clinical significance of TROP2 expression in colorectal cancer. Clin Cancer Res 2006;12:3057–63

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Schlomm T, Luebke AM, Sultmann H, et al. Extraction and processing of high quality RNA from impalpable and macroscopically invisible prostate cancer for microarray gene expression analysis. Int J Oncol 2005;27:713–20

    PubMed  CAS  Google Scholar 

  24. 24.

    Siewert JR, Bottcher K, Stein HJ, Roder JD. Relevant prognostic factors in gastric cancer: ten-year results of the German Gastric Cancer Study. Ann Surg 1998;228:449–61

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Nakamura K, Ueyama T, Yao T, et al. Pathology and prognosis of gastric carcinoma. Findings in 10,000 patients who underwent primary gastrectomy. Cancer 1992;70:1030–7

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Itoh H, Oohata Y, Nakamura K, Nagata T, Mibu R, Nakayama F. Complete ten-year postgastrectomy follow-up of early gastric cancer. Am J Surg 1989;158:14–6

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Ohta H, Noguchi Y, Takagi K, Nishi M, Kajitani T, Kato Y. Early gastric carcinoma with special reference to macroscopic classification. Cancer 1987;60:1099–106

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Sano T, Kobori O, Muto T. Lymph node metastasis from early gastric cancer: endoscopic resection of tumour. Br J Surg 1992;79:241–4

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Gotoda T, Yamamoto H, Soetikno RM. Endoscopic submucosal dissection of early gastric cancer. J Gastroenterol 2006;41:929–42

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

Supported in part by CREST, Japan Science and Technology Agency (JST); Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research (grants 17109013, 17591411, 17591413, 18390367, 18590333, 18659384, and 18790964); and Ministry of Education, Culture, Sports, Science and Technology (MEXT) Grant-in-Aid for Scientific Research on Priority Areas (grant 18015039), third term. We thank T. Shimooka, K. Ogata, M. Oda, N. Kasagi, and Y. Nakagawa for technical assistance.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Masaki Mori MD, PhD, FACS.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kosaka, Y., Inoue, H., Ohmachi, T. et al. Tripartite Motif-Containing 29 (TRIM29) Is a Novel Marker for Lymph Node Metastasis in Gastric Cancer. Ann Surg Oncol 14, 2543–2549 (2007). https://doi.org/10.1245/s10434-007-9461-1

Download citation

Keywords

  • ATDC
  • Gastric cancer
  • Lymph node metastasis
  • Prognosis
  • TRIM29