Skip to main content
Log in

Magnetic Resonance–Guided Focused Ultrasound Surgery for the Noninvasive Curative Ablation of Tumors and Palliative Treatments: A Review

  • Educational Review
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

This article reviews and discusses the up-to-date data on and feasibility of focused ultrasound surgery. This technique uses high-energy ultrasound beams that can be directed to penetrate through the skin and various soft tissues, focus on the target, and destroy tumors by increasing the temperature at the targeted tissue volume. The boundaries of the treatment area are sharply demarcated (focused) without causing damage to the surrounding organs. Although the idea of using sound waves to ablate tumors was first demonstrated in the 1940 s, only recent developments have enabled this technology to become more controlled and, hence, more feasible. The major breakthrough toward its clinical use came with coupling the thermal ablative process to advanced imaging. The development of magnetic resonance as the foundation to guide and evaluate the end results of focused ultrasound surgery treatment, the image guidance of the ultrasound beam, and the development of a reliable method for tissue temperature measurement and real-time feedback of the extent of tissue destruction have pushed this novel technology forward in oncological practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.

Similar content being viewed by others

References

  1. Wood R, Loomis A. The physical and biological effects of high frequency sound waves of greater intensity. London Edinburgh Dublin Philos Mag J Sci 1927; 4:417–36

    CAS  Google Scholar 

  2. Gruetzmacher J. Piezoelektrischer kristall mit ultraschallkonvergenz. Z Phys 1935; 96:342–9

    Article  CAS  Google Scholar 

  3. Lynn J, Zwemer R, Chick A, Miller A. A new method for the generation and use of focused ultrasound in experimental biology. J Gen Physiol 1942; 26:179–93

    Article  Google Scholar 

  4. Fry W, Barnard J, Fry F, Krumins R, Brennan J. Ultrasonic lesions in the mammalian central nervous system. Science 1942; 122:517–8

    Article  Google Scholar 

  5. Wall P, Fry W, Stephens R. Changes produced in the central nervous system by ultrasound. Science 1951; 114:686–7

    Article  PubMed  CAS  Google Scholar 

  6. Fry WJ, Mosberg WH, Barnard JW, Fry FJ. Production of focal destructive lesions in the central nervous system with ultrasound. J Neurosurg 1954; 11:471–8

    PubMed  CAS  Google Scholar 

  7. Fry FJ. Precision high intensity focusing ultrasonic machines for surgery. Am J Phys Med 1958; 37:152–6

    PubMed  CAS  Google Scholar 

  8. Meyers R, Fry W, Fry F. Early experiences with ultrasonic irradiation of the pallidofugal and nigral complexes in hyperkinetic and hypertonic disorders. J Neurosurg 1959; 16:32–54

    PubMed  CAS  Google Scholar 

  9. Szent Gyorgyi A. Chemical and biological effects of ultrasonic radiation. Nature 1933; 131:278

    Google Scholar 

  10. Burov A, Andreevskaya G. The effect of ultra-acoustic oscillation of high intensity on malignant tumors in animals and man. Dokl Akad Nauk SSSR 1956; 106:445–8

    Google Scholar 

  11. Oka M. Progress in studies of the potential use of medical ultrasonics. Wakayama Med Rep (Japan) 1977; 20:1–50

    Google Scholar 

  12. Fry WJ, Fry FJ. Fundamental neurological research and human neurosurgery using intense ultrasound. IRE Trans Med Electron 1960; 7:166-81

    Article  PubMed  Google Scholar 

  13. Kishi M, Mishima T, Itakura T, Tsuda K, Oka M. Experimental studies of effects of intense ultrasound on implantable murine glioma. In: Kazner E, de Vliger M, Muller HR, McCready VR, eds. Ultrasonics in medicine. Amsterdam: Excerpta Medica, 1975:28–33

  14. Fry F, Johnson L. Tumor irradiation with intense ultrasound. Ultrasound Med Biol 1978; 4:337–41

    Article  PubMed  CAS  Google Scholar 

  15. Linke C, Carstensen E, Frizzell L, Elbadawi A, Fridd C. Localized tissue destruction by high-intensity focused ultrasound. Arch Surg 1973; 107:887–91

    PubMed  CAS  Google Scholar 

  16. Fry F, Kossoff G, Eggleton R, Dunn F. Threshold ultrasound dosages for structural changes in the mammalian brain. J Acoust Soc Am 1970; 48:1413–7

    Article  PubMed  Google Scholar 

  17. Johnston RL, Dunn F. Ultrasonic absorbed dose, dose rate and produced lesion volume. Ultrasonics 1976; 14:153–5

    Article  PubMed  CAS  Google Scholar 

  18. Frizzell LA, Linke CA, Carstensen EL, Fridd CW. Thresholds for focal ultrasonic lesions in rabbit kidney, liver, and testicle. IEEE Trans Biomed Eng 1977; 24:393–6

    Article  PubMed  CAS  Google Scholar 

  19. Lele P. Production of deep focal lesions by focused ultrasound—current status. Ultrasonics 1967; 5:105–22

    Article  PubMed  CAS  Google Scholar 

  20. Lele P. A simple method for production of trackless focal lesions with focused ultrasound: physical factors. J Physiol 1962; 160:494–512

    PubMed  CAS  Google Scholar 

  21. Fry FJ, Ades HW, Fry WJ. Production of reversible changes in the central nervous system by ultrasound. Science 1958; 127:83-4

    Article  PubMed  CAS  Google Scholar 

  22. Lele PP. Fundamental and applied aspects of nonionizing radiation. In: Ultrasound in Surgery. New York: Plenum Press, 1975:325–40

  23. Silverman R, Vogelsang B, Rondeau M, Coleman D. Therapeutic ultrasound for the treatment of glaucoma. Am J Ophthalmol 1991; 111:327–37

    PubMed  CAS  Google Scholar 

  24. Rosecan L, Iwamoto T, Rosado A, Lizzi F, Coleman D. Therapeutic ultrasound in the treatment of retinal detachment: clinical observation and light and electron microscopy. Retina 1985; 5:115–22

    Article  PubMed  CAS  Google Scholar 

  25. Coleman DJ, Lizzi FL, Torpey JH, et al. Treatment of experimental lens capsular tears with intense focused ultrasound. Br J Ophthalmol 1985; 69:645–9

    PubMed  CAS  Google Scholar 

  26. Hynynen K, DeYoung D. Temperature elevation at muscle-bone interface during scanned, focused ultrasound hyperthermia. Int J Hyperthermia 1988; 4:267–79

    PubMed  CAS  Google Scholar 

  27. Hynynen K, Roemer R, Anhalt D, et al. A scanned, focused, multiple transducer ultrasonic system for localized hyperthermia treatments. Int J Hyperthermia 1987; 3:21–35

    Article  PubMed  CAS  Google Scholar 

  28. ter Haar G, Sinnett D, Rivens I. High intensity focused ultrasound—a surgical technique for the treatment of discrete liver tumours. Phys Med Biol 1989; 34:1743–50

    Article  PubMed  CAS  Google Scholar 

  29. Yang R, Reilly CR, Rescorla FJ, et al. High-intensity focused ultrasound in the treatment of experimental liver cancer. Arch Surg 1991; 126:1002–9; discussion 1009–10

    PubMed  CAS  Google Scholar 

  30. Yang R, Reilly CR, Rescorla FJ, et al. Effects of high intensity focused ultrasound in the treatment of experimental neuroblastoma. J Pediatr Surg 1992; 27:246–250; discussion 250–41

    Article  PubMed  CAS  Google Scholar 

  31. Sibille A, Prat F, Chapelon JY, et al. Extracorporeal ablation of liver tissue by high-intensity focused ultrasound. Oncology 1993; 50:375–9

    Article  PubMed  CAS  Google Scholar 

  32. Prat F, Centarti M, Sibille A, et al. Extracorporeal high intensity focused ultrasound for VX2 liver tumors in the rabbit. Hepatology 1995; 21:832–6

    PubMed  CAS  Google Scholar 

  33. Gelet A, Chapelon JY, Margonari J, et al. Prostatic tissue destruction by high-intensity focused ultrasound: experimentation on canine prostate. J Endourol 1993; 7:249–53

    PubMed  CAS  Google Scholar 

  34. Adams JB, Moore RG, Anderson JH, Strandberg JD, Marshall FF, Davoussi LR. High-intensity focused ultrasound ablation of rabbit kidney tumors. J Endourol 1996; 10:71–5

    PubMed  CAS  Google Scholar 

  35. Kincaide LF, Sanghvi NT, Cummings O, et al. Noninvasive ultrasonic subtotal ablation of the prostate in dogs. Am J Vet Res 1996; 57:1225–7

    PubMed  CAS  Google Scholar 

  36. Rowland IJ, Rivens I, Chen L, et al. MRI study of hepatic tumours following high intensity focused ultrasound surgery. Br J Radiol 1997; 70:144–53

    PubMed  CAS  Google Scholar 

  37. Watkin NA, Morris SB, Rivens IH, ter Haar GR. High intensity focused ultrasound ablation of the kidney in a large animal model. J Endourol 1997; 11:191–6

    PubMed  CAS  Google Scholar 

  38. Vallancien G, Chartier-Kastler E, Harouni M, Chopin D, Bougaran J. Focused extracorporeal pyrotherapy: experimental study and feasibility in man. Semin Urol 1993; 11:7–9

    PubMed  CAS  Google Scholar 

  39. Sandilos P, Tsalafoutas I, Koutsokalis G, et al. Radiation doses to patients from extracorporeal shock wave lithotripsy. Health Phys 2006; 90:583–7

    Article  PubMed  CAS  Google Scholar 

  40. Wu F, Chen WZ, Bai J, et al. Tumor vessel destruction resulting from high-intensity focused ultrasound in patients with solid malignancies. Ultrasound Med Biol 2002; 28:535–42

    Article  PubMed  Google Scholar 

  41. Mulligan ED, Lynch TH, Mulvin D, Greene D, Smith JM, Fitzpatrick JM. High-intensity focused ultrasound in the treatment of benign prostatic hyperplasia. Br J Urol 1997; 79:177–80

    PubMed  CAS  Google Scholar 

  42. Nakamura K, Baba S, Saito S, Tachibana M, Murai M. High-intensity focused ultrasound energy for benign prostatic hyperplasia: clinical response at 6 months to treatment using Sonablate 200. J Endourol 1997; 11:197–201

    PubMed  CAS  Google Scholar 

  43. Sullivan LD, McLoughlin MG, Goldenberg LG, Gleave ME, Marich KW. Early experience with high-intensity focused ultrasound for the treatment of benign prostatic hypertrophy. Br J Urol 1997; 79:172–6

    PubMed  CAS  Google Scholar 

  44. Uchida T, Sanghvi NT, Gardner TA, et al. Transrectal high-intensity focused ultrasound for treatment of patients with stage T1b-2N0M0 localized prostate cancer: a preliminary report. Urology 2002; 59:394–8; discussion 398–9

    Article  PubMed  Google Scholar 

  45. Gelet A, Chapelon JY, Bouvier R, et al. Transrectal high intensity focused ultrasound: minimally invasive therapy of localized prostate cancer. J Endourol 2000; 14:519–28

    PubMed  CAS  Google Scholar 

  46. Sanghvi NT, Foster RS, Bihrle R, et al. Noninvasive surgery of prostate tissue by high intensity focused ultrasound: an updated report. Eur J Ultrasound 1999; 9:19–29

    Article  PubMed  CAS  Google Scholar 

  47. Chen L, ter Haar GR, Robertson D, Bensted JP, Hill CR. Histological study of normal and tumor-bearing liver treated with focused ultrasound. Ultrasound Med Biol 1999; 25:847–56

    Article  PubMed  CAS  Google Scholar 

  48. Visioly AG, Rivens IH, ter Haar GR, et al. Preliminary results of a phase I dose escalation clinical trial using focused ultrasound in the treatment of localized tumours. Eur J Ultrasound 1999; 9:11–8

    Article  Google Scholar 

  49. Wu F, Chen WZ, Bai J, et al. Pathological changes in human malignant carcinoma treated with high-intensity focused ultrasound. Ultrasound Med Biol 2001; 27:1099–06

    Article  PubMed  CAS  Google Scholar 

  50. Wu F, Wang Z-B, Chen W-Z, et al. Extracorporeal high intensity focused ultrasound ablation in the treatment of patients with large hepatocellular carcinoma. Ann Surg Oncol 2004; 11:1061–9

    Article  PubMed  Google Scholar 

  51. Li CX, Xu GL, Li JJ, Luo GY. High intensity focused ultrasound for liver cancer (in Chinese). Zhonghua Zhong Liu Za Zhi 2003; 25:94–6

    PubMed  Google Scholar 

  52. Chen W, Wang Z, Wu F, et al. High intensity focused ultrasound in the treatment of primary malignant bone tumor (in Chinese). Zhonghua Zhong Liu Za Zhi 2002; 24:612–5

    PubMed  Google Scholar 

  53. Chen W, Wang Z, Wu F, et al. High intensity focused ultrasound alone for malignant solid tumors (in Chinese). Zhonghua Zhong Liu Za Zhi 2002; 24:278–81

    PubMed  Google Scholar 

  54. Wang X, Sun J. High-intensity focused ultrasound in patients with late-stage pancreatic carcinoma. Chin Med J (Engl) 2002; 115:1332–5

    Google Scholar 

  55. Paterson RF, Barret E, Siqueira TM Jr, et al. Laparoscopic partial kidney ablation with high intensity focused ultrasound. J Urol 2003; 169:347–51

    Article  PubMed  Google Scholar 

  56. Kohrmann KU, Michel MS, Gaa J, Marlinghaus E, Alken P. High intensity focused ultrasound as noninvasive therapy for multilocal renal cell carcinoma: case study and review of the literature. J Urol 2002; 167:2397–403

    Article  PubMed  Google Scholar 

  57. Hynynen K, Damianou C, Darkazanli A, Unger E, Schenck JF. The feasibility of using MRI to monitor and guide noninvasive ultrasound surgery. Ultrasound Med Biol 1993; 19:91–2

    Article  PubMed  CAS  Google Scholar 

  58. Cline HE, Hynynen K, Watkins RD, et al. Focused US system for MR imaging-guided tumor ablation. Radiology 1995; 194:731–7

    PubMed  CAS  Google Scholar 

  59. Hynynen K, Chung A, Fjield T, et al. Feasibility of using ultrasound phase arrays for MRI monitored noninvasive surgery. IEEE Trans Ultrasonics Ferroelectrics Frequency Control 1996; 43:1043–54

    Article  Google Scholar 

  60. Sapareto SA, Dewey WC. Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys 1984; 10:787–800

    PubMed  CAS  Google Scholar 

  61. Jolesz FA, Bleier AR, Jakab P, Ruenzel PW, Huttl K, Jako GJ. MR imaging of laser-tissue interactions. Radiology 1988; 168:249–53

    PubMed  CAS  Google Scholar 

  62. McDannold NJ, King RL, Jolesz FA, Hynynen KH. Usefulness of MR imaging-derived thermometry and dosimetry in determining the threshold for tissue damage induced by thermal surgery in rabbits. Radiology 2000; 216:517–23

    PubMed  CAS  Google Scholar 

  63. Hazle JD, Stafford RJ, Price RE. Magnetic resonance imaging-guided focused ultrasound thermal therapy in experimental animal models: correlation of ablation volumes with pathology in rabbit muscle and VX2 tumors. J Magn Reson Imaging 2002; 15:185–94

    Article  PubMed  Google Scholar 

  64. Sokka SD, King R, Hynynen K. MRI-guided gas bubble enhanced ultrasound heating in vivo rabbit thigh. Phys Med Biol 2003; 48:223–41

    Article  PubMed  CAS  Google Scholar 

  65. Hynynen K. Focused ultrasound surgery guided by MRI. Sci Med 1996; 3(5). http://www.advanced-surgical.com/Documents/Science_and_Medicine/index.htm

  66. Kopelman D, Inbar Y, Hanannel A, et al. Magnetic resonance guided focused ultrasound surgery (MRgFUS), accelerated non-invasive ablation, using an enhanced sonication technique—a pig’s muscle model. Eur J Radiol 2006; 59:190–7

    Article  PubMed  Google Scholar 

  67. Inbar Y, Hanannel A, Freunlich D, et al. Controlled apnea for focused ultrasound ablation of liver tissue—animal model. In: Proceedings of the Twelfth Meeting of the International Society for Magnetic Resonance in Medicine, Kyoto, Japan. Berkeley, CA: ISMRM, 2004:2697

  68. Kopelman D, Inbar Y, Hanannel A, et al. Magnetic resonance guided focused ultrasound surgery (MRgFUS). Ablation of liver tissue—a porcine model. Eur J Radiol 2006; 59:157–62

    Article  PubMed  Google Scholar 

  69. Kopelman D, Inbar Y, Hanannel A, et al. Magnetic resonance guided focused ultrasound surgery (MRgFUS). Four ablation treatments of a single canine hepatocellular adenoma. HPB Surg 2006; 8:292–8

    Google Scholar 

  70. Hynynen K, Vykhodtseva NI, Chung AH, Sorrentino V, Colucci V, Jolesz FA. Thermal effects of focused ultrasound on the brain: determination with MR. Radiology 1997; 204:247–53

    PubMed  CAS  Google Scholar 

  71. Vykhodtseva N, McDannold N, Martin H, Bronson RT, Hynynen K. Apoptosis in ultrasound-produced threshold lesions in the rabbit brain. Ultrasound Med Biol 2001; 27:111–7

    Article  PubMed  CAS  Google Scholar 

  72. Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA. Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology 2001; 220:640–6

    Article  PubMed  CAS  Google Scholar 

  73. Clement GT, White PJ, King RL, McDannold N, Hynynen K. A magnetic resonance imaging-compatible, large-scale array for trans-skull ultrasound surgery and therapy. J Ultrasound Med 2005; 24:1117–25

    PubMed  Google Scholar 

  74. Kopelman D, Inbar Y, Hanannel A, et al. Magnetic resonance guided focused ultrasound (MRgFUS) ablation of soft tissue at bone-muscle interface: a porcine model. Eur J Clin Invest (in press)

  75. Hynynen K, Pomeroy O, Smith DN, et al. MR imaging-guided focused ultrasound surgery of fibroadenomas in the breast: a feasibility study. Radiology 2001; 219:176–85

    PubMed  CAS  Google Scholar 

  76. Gianfelice D, Khiat A, Amara M, Belblidia A, Boulanger Y. MR imaging-guided focused US ablation of breast cancer: histopathologic assessment of effectiveness—initial experience. Radiology 2003; 227:849–55

    Article  PubMed  Google Scholar 

  77. Gianfelice D, Khiat A, Boulanger Y, Amara M, Belblidia A. Feasibility of magnetic resonance imaging–guided focused ultrasound surgery as an adjunct to tamoxifen therapy in high-risk surgical patients with breast carcinoma. J Vasc Interv Radiol 2003; 14:1275–82

    PubMed  Google Scholar 

  78. Furusawa H, Namba K, Thomsen S et al. Magnetic resonance-guided focused ultrasound surgery of breast cancer: reliability and effectiveness. J Am Coll Surg 2006; 203(1):54-63

    Article  PubMed  Google Scholar 

  79. Tempany CM, Stewart EA, McDannold N, Quade BJ, Jolesz FA, Hynynen K. MR imaging-guided focused ultrasound surgery of uterine leiomyomas: a feasibility study. Radiology 2003; 226:897–905

    Article  PubMed  Google Scholar 

  80. Stewart EA, Gedroyc WMW, Tempany CMC, et al. Focused ultrasound treatment of uterine fibroid tumors: safety and feasibility of a noninvasive thermoablative technique. Am J Obstet Gynecol 2003; 189:48–54

    Article  PubMed  Google Scholar 

  81. McDannold N, Tempany CM, Fennessy FM et al. Uterine leiomyomas: MR imaging-based thermometry and thermal dosimetry during focused ultrasound thermal ablation. Radiology 2006; 240(1):263–72

    Article  PubMed  Google Scholar 

  82. Stewart EA, Rabinovici J, Tempany CM et al. Clinical outcomes of focused ultrasound surgery for the treatment of uterine fibroids. Fertil Steril 2006; 85:22–9

    Article  PubMed  Google Scholar 

  83. Heslev GK, Felmlee JP, Gebhart JB, et al. Noninvasive treatment of uterine fibroids: early Mayo Clinic experience with magnetic resonance imaging-guided focused ultrasound. Mayo Clin Proc 2006; 81(7):936–42

    Article  Google Scholar 

  84. Smart OC, Hindley JT, Regan L, Gedroyc WM. Magnetic resonance guided focused ultrasound surgery of uterine fibroids—the tissue effects of GnRH agonist pretreatment. Eur J Radio 2006; 59(2):163-7

    Article  CAS  Google Scholar 

  85. Jolesz FA, Hynynen K, McDannold N, Freundlich D, Kopelman D. Noninvasive thermal ablation of hepatocellular carcinoma by using magnetic resonance imaging-guided focused ultrasound. Gastroenterology 2004; 127:S242–7

    Article  PubMed  Google Scholar 

  86. Catane R, Beck A, Inbar Y, et al. MR guided focused ultrasound surgery (MRgFUS) for the palliation of pain in patients with bone metastases—preliminary clinical experience. Ann Oncol (in press). http://annonc.oxfordjournals.org/cgi/content/abstract/annonc;mdl335V1

  87. Ram Z, Cohen ZR, Har Nof S, et al. Magnetic resonance imaging-guided high-intensity focused ultrasound for brain tumor therapy. Neurosurgery 2006, 59(5):949–56

    PubMed  Google Scholar 

  88. Hynynen K, Jolesz FA. Principles of MR-guided focused ultrasound. In: Lufkin RB, ed. Interventional MRI. St. Louis: Mosby, 1999; 237–243

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doron Kopelman MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopelman, D., Papa, M. Magnetic Resonance–Guided Focused Ultrasound Surgery for the Noninvasive Curative Ablation of Tumors and Palliative Treatments: A Review. Ann Surg Oncol 14, 1540–1550 (2007). https://doi.org/10.1245/s10434-006-9326-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-006-9326-z

Keywords

Navigation