Skip to main content

Advertisement

Log in

Effect of Combined Therapy With Low-Dose 5-Aza-2′-Deoxycytidine and Irinotecan on Colon Cancer Cell Line HCT-15

  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Aberrant promoter hypermethylation is an epigenetic change that silences the expression of crucial genes, resulting in inactivation of the apoptotic pathway in various cancers. This hypermethylation can be restored by the demethylating agent 5-aza-2′-deoxycytidine (DAC). DAC might increase the tumor sensitivity to chemotherapy through demethylation and restoration of gene expression. We investigated the effect of combined therapy with DAC and irinotecan (CPT-11) on the human colon cancer cell line HCT-15.

Methods

Human colon cancer cell line HCT-15 was treated with DAC and/or CPT-11 both in vitro and in vivo. The changes in mRNA expression of several apoptosis-related genes were investigated by reverse transcriptase–polymerase chain reaction (PCR). Promoter methylation was detected by methylation-specific PCR and combined bisulfite restriction analysis. Suppression of tumor growth was observed during the treatment with DAC and/or CPT-11 and apoptosis in the tumors was investigated by TUNEL (terminal deoxynucleotidyl transferase dUTP nick-end labeling) assay.

Results

Promoter methylation of p14 ARF, p16 INK4a, BNIP3, and XAF1 was confirmed, and DAC restored mRNA expression of these genes. Demethylation and restoration of gene expression was observed with low-dose DAC, and demethylation status was sustained for several weeks. Combined therapy with DAC and CPT-11 produced marked suppression in tumor growth compared with DAC or CPT-11 alone, both in vitro and in vivo.

Conclusions

Pretreatment with low-dose DAC may have the potential to be used as a “biosensitizer” of DNA-damaging agents such as CPT-11 when the apoptotic pathway is inactivated as a result of aberrant promoter methylation in the cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.

Similar content being viewed by others

References

  1. Weitz J, Koch M, Debus J, Höhler T, Galle PR, Büchler MW. Colorectal cancer. Lancet 2005; 365:153–65

    Article  PubMed  Google Scholar 

  2. Kawato Y, Aonuma M, Hirota Y, Kuga H, Sato K. Intracellular roles of SN-38, a metabolite of the camptothecin derivative CPT-11, in the antitumor effect of CPT-11. Cancer Res 1991; 51:4187–91

    PubMed  CAS  Google Scholar 

  3. Hsiang YH, Lihou MG, Liu LF. arrest of replication forks by drug-stabilized topoisomerase I–DNA cleavable complexes as a mechanism of cell killing by camptothecin. Cancer Res 1989; 49:5077–82

    PubMed  CAS  Google Scholar 

  4. Douillard JY, Cunningham D, Roth AD, et al. Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomized trial. Lancet 2000; 355:1041–7

    Article  PubMed  CAS  Google Scholar 

  5. Rougier P, Bougat R, Douillard JY, et al. Phase II study of irinotecan in the treatment of advanced colorectal cancer in chemotherapy-naïve patients and patients pretreated with fluorouracil-based chemotherapy. J Clin Oncol 1997; 15:251–60

    PubMed  CAS  Google Scholar 

  6. Nishimura G, Satou T, Yoshimitsu Y, et al. Effect of chemotherapy using irinotecan (CPT-11) against recurrent colorectal cancer. Gan To Kagaku Ryoho 1995; 22:93–7

    PubMed  CAS  Google Scholar 

  7. Tournigand C, André T, Achille E, et al. FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: a randomized GERCOR study. J Clin Oncol 2004; 22:229–37

    Article  PubMed  CAS  Google Scholar 

  8. Saltz LB, Cox JV, Blanke C, et al. Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. N Engl J Med 2000; 343:905–14

    Article  PubMed  CAS  Google Scholar 

  9. Ichikawa W, Uetake H, Shirota Y, et al. Combination of dihydropyrimidine dehydrogenase and thymidilate synthase gene expressions in primary tumors as predictive parameters for the efficacy of fluoropyrimidine-based chemotherapy for metastatic colorectal cancer. Clin Cancer Res 2003; 9:786–91

    PubMed  CAS  Google Scholar 

  10. Teodoridis JM, Strathdee G, Brown R. Epigenetic silencing mediated by CpG island methylation: potential as a therapeutic target and as a biomarker. Drug Resist Updat 2004; 7:267–78

    Article  PubMed  CAS  Google Scholar 

  11. Paz MF, Fraga MF, Avila S, et al. A systematic profile of DNA methylation in human cancer cell lines. Cancer Res 2003; 63:1114–21

    PubMed  CAS  Google Scholar 

  12. Widschwendter M, Jones PA. The potential prognostic, predictive, and therapeutic values of DNA methylation in cancer. Clin Cancer Res 2002; 8:17–21

    PubMed  Google Scholar 

  13. Goffin J, Eisenhauer E. DNA methyltransferase inhibitors: state of the art. Ann Oncol 2002; 13:1699–716

    Article  PubMed  CAS  Google Scholar 

  14. Momparler RL. Molecular, cellular and animal pharmacology of 5-aza-2′-deoxycytidine. Pharmacol Ther 1985; 30:287–99

    Article  PubMed  CAS  Google Scholar 

  15. Jones PA, Taylor SM. Cellular differentiation, cytidine analogs, and DNA methylation. Cell 1980; 20:85–93

    Article  PubMed  CAS  Google Scholar 

  16. Kuo ML, Duncavage EJ, Mathew R, et al. Arf induces p53-dependent and -independent antiproliferative genes. Cancer Res 2003; 63:1046–53

    PubMed  CAS  Google Scholar 

  17. Normand G, Hemmati PG, Verdoodt B, et al. p14ARF induced g2 cell cycle arrest in p53- and p21-deficient cells by down-regulating p34cdc2 kinase activity. J Biol Chem 2005; 280:7118–30

    Article  PubMed  CAS  Google Scholar 

  18. Arnold CN, Goel A, Boland CR. Role of hMLH1 promoter hypermethylation in drug resistance to 5-fluorouracil in colorectal cancer cell lines. Int J Cancer 2003; 106:66–73

    Article  PubMed  CAS  Google Scholar 

  19. Plumb JA, Strahdee G, Sludden J, Kaye SB, Brown R. Reversal of drug resistance in human tumor xenografts by 2′-deoxy-5-azacytidine-induced demethylation of the hMLH1 gene promoter. Cancer Res 2000; 60:6039–44

    PubMed  CAS  Google Scholar 

  20. Lavelle D, DeSimone J, Hankewych M, Kousnetzova T, Chen YH. Decitabine induces cell cycle arrest at G1 phase via p21WAF1 and G2/M phase via p38 MAP kinase pathway. Leuk Res 2003; 27:999–1007

    Article  PubMed  CAS  Google Scholar 

  21. Yoshikawa H, Nagashima M, Khan MA, McMenamin MG, Hagiwara K, Harris CC. Mutation analysis of p73 and p53 in human cancer cell lines. Oncogene 1999; 18:3415–21

    Article  PubMed  CAS  Google Scholar 

  22. Hagiwara K, McMenamin MG, Miura K, Harris CC. Mutation analysis of the p63/p73L/p51/p40/CUSP/KET gene in human cancer cell lines using intronic primers. Cancer Res 1999; 59:4165–9

    PubMed  CAS  Google Scholar 

  23. Aparicio A, Eads CA, Leong LA, et al. Phase I trial of continuous infusion 5-aza-2′-deoxycitidine. Cancer Chemother Pharmacol 2003; 51:231–9

    PubMed  CAS  Google Scholar 

  24. Aoyagi Y, Kobunai T, Utsugi T, Wierzba K, Yamada Y. Establishment and characterization of 6-[[2-(dimethylamino)ethyl]amino]-3-hydroxy-7H-indeno[2,1-c]quinolin-7-one dihydrochloride (TAS-103)-resistant cell lines. Jpn J Cancer Res 2000; 91:543–50

    PubMed  CAS  Google Scholar 

  25. Ueno M, Nonaka S, Yamazaki R, Deguchi N, Murai M. SN-38 induces cell cycle arrest and apoptosis in human testicular cancer. Eur Urol 2002; 42:390–7

    Article  PubMed  CAS  Google Scholar 

  26. Uetake H, Ichikawa W, Takechi T, Fukushima M, Nihei Z, Sugihara K. Relationship between intratumoral dihydropyrimidine dehydrogenase activity and gene expression in human colorectal cancer. Clin Cancer Res 1999; 5:2836–9

    PubMed  CAS  Google Scholar 

  27. Bassett MH, Suzuki T, Sasano H, et al. The orphan nuclear receptor NGFIB regulates transcription of 3β-hydroxysteroid dehydrogenase. J Biol Chem 2004; 279:37622–30

    Article  PubMed  CAS  Google Scholar 

  28. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 1996; 93:9821–6

    Article  PubMed  CAS  Google Scholar 

  29. Iida S, Akiyama Y, Nakajima T, et al. Alterations and hypermethylation of the p14(ARF) gene in gastric cancer. Int J Cancer 2000; 87:654–8

    Article  PubMed  CAS  Google Scholar 

  30. Frommer M, McDonald LE, Millar DS, et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 1992; 89:1827–31

    Article  PubMed  CAS  Google Scholar 

  31. Xiong Z, Laird PW. COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res 1997;25:2532–4

    Article  PubMed  CAS  Google Scholar 

  32. Petak I, Danam RP, Tillman DM, et al. Hypermethylation of the gene promoter and enhancer region can regulate Fas expression and sensitivity in colon carcinoma. Cell Death Differ 2003; 10:211–7

    Article  PubMed  CAS  Google Scholar 

  33. Hemmati PG, Gillissen B, von Haefen C, et al. Adenovirus-mediated overexpression of p14ARF induces p53 and Bax-independent apoptosis. Oncogene 2002; 21:3149–61

    Article  PubMed  CAS  Google Scholar 

  34. Chen G, Ray R, Dubik D, et al. The E1B 19K/bcl-2-binding protein Nip3 is a dimeric mitochondrial protein that activates apoptosis. J Exp Med 1997; 186:1975–83

    Article  PubMed  CAS  Google Scholar 

  35. Okami J, Simeone DM, Logsdon CD. Silencing of the hypoxia-inducible cell death protein BNIP3 in pancreatic cancer. Cancer Res 2004; 64:5338–46

    Article  PubMed  CAS  Google Scholar 

  36. Vande Velde C, Cizeau J, Dubik D, et al. BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Mol Cell Biol 2000; 20:5454–68

    Article  PubMed  CAS  Google Scholar 

  37. Fong WG, Liston P, Rajcan-Separovic E, Jean MS, Craig C, Korneluk RG. Expression and genetic analysis of XIAP-associated factor 1 (XAF1) in cancer cell lines. Genomics 2000; 70:113–22

    Article  PubMed  CAS  Google Scholar 

  38. Ma TL, Ni PH, Zhohg J, Tan JH, Qiao MM, Jiang SH. Low expression of XIAP-associated factor 1 in human colorectal cancers. Chinese Journal of Digestive Diseases 2005; 6:10–4

    Article  PubMed  CAS  Google Scholar 

  39. Byun DS, Cho K, Ryu BK, et al. Hypermethylation of XIAP-associated factor 1, a putative tumor suppressor gene from the 17p13.2 locus, in human gastric adenocarcinomas. Cancer Res 2003; 63:7068–75

    PubMed  CAS  Google Scholar 

  40. Violette S, Poulain L, Dussaulx E, et al. Resistance of colon cancer cells to long-term 5-fluorouracil exposure is correlated to the relative level of bcl-2 and bcl-XL in addition to bax and p53 status. Int J Cancer 2002; 98:498–504

    Article  PubMed  CAS  Google Scholar 

  41. Tan KB, Mattern MR, Eng WK, McCabe FL, Johnson RK. Nonproductive rearrangement of DNA Topoisomerase I and II Genes: correlation with resistance to topoisomerase inhibitors. J Natl Cancer Inst 1989; 81:1732–5

    Article  PubMed  CAS  Google Scholar 

  42. Rasheed ZA, Rubin EH. Mechanisms of resistance to topoisomerase I–targeting drugs. Oncogene 2003; 22:7296–304

    Article  PubMed  CAS  Google Scholar 

  43. Bras-Goncalves RA, Rosty C, Laurent-Puig P, Soulie P, Dutrillaux B, Poupon MF. Sensitivity to CPT-11 of xenografted human colorectal cancers as a function of microsatellite instability and p53 status. Br J Cancer 2000; 82:913–23

    Article  PubMed  CAS  Google Scholar 

  44. Issa JJ, Garcia-Manero G, Giles FJ, et al. Phase I study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2′-deoxycytidine (decitabine) in hematopoietic malignancies. Blood 2004; 103:1635–40

    Article  PubMed  CAS  Google Scholar 

  45. Wijermans P, Lubbert M, Verhoef G, et al. Low-dose 5-aza-2′-deoxycytidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome: a multicenter phase II study in elderly patients. J Clin Oncol 2000; 18:956–62

    PubMed  CAS  Google Scholar 

  46. Samlowski WE, Leachman SA, Wade M, et al. Evaluation of a 7-day continuous intravenous infusion of decitabine: inhibition of promoter-specific and global genomic DNA methylation. J Clin Oncol 2005; 23:3897–905

    Article  PubMed  CAS  Google Scholar 

  47. Aparicio A, Weber JS. Review of the clinical experience with 5-azacytidine and 5-aza-2′-deoxycytidine in solid tumors. Curr Opin Invest Drugs 2002; 3:627–33

    CAS  Google Scholar 

  48. Anzai H, Frost P, Abbruzzese JL. Synergistic cytotoxicity with 2′-deoxy-5-azacytidine and topotecan in vitro and in vivo. Cancer Res 1992; 52:2180–5

    PubMed  CAS  Google Scholar 

  49. Pohlmann P, DiLeone LP, Cancella AI, et al. Phase II trial of cisplatin plus decitabine, a new DNA hypomethylating agent, in patients with advanced squamous cell carcinoma of the cervix. Am J Clin Oncol 2002; 25:496–501

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megumi Ishiguro MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishiguro, M., Iida, S., Uetake, H. et al. Effect of Combined Therapy With Low-Dose 5-Aza-2′-Deoxycytidine and Irinotecan on Colon Cancer Cell Line HCT-15. Ann Surg Oncol 14, 1752–1762 (2007). https://doi.org/10.1245/s10434-006-9285-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-006-9285-4

Keywords

Navigation