Skip to main content

Advertisement

Log in

Radiation-Induced Cellular DNA Damage Repair Response Enhances Viral Gene Therapy Efficacy in the Treatment of Malignant Pleural Mesothelioma

  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Malignant pleural mesothelioma (MPM) treated with radiotherapy (RT) has incomplete responses as a result of radiation-induced tumoral stress response that repairs DNA damage. Such stress response is beneficial for oncolytic viral therapy. We hypothesized that a combination of RT and NV1066, an oncolytic herpes virus, might exert an additive or synergistic effect in the treatment of MPM.

Methods

JMN, a MPM cell line, was infected with NV1066 at multiplicities of infection of .05 to .25 in vitro with and without radiation (1 to 5 Gy). Virus replication was determined by plaque assay, cell kill by lactate dehydrogenase assay, and GADD34 (growth arrest and DNA damage repair 34, a DNA damage-repair protein) by real-time reverse transcriptase–polymerase chain reaction and Western blot test. Synergistic cytotoxicity dependence on GADD34 upregulation was confirmed by GADD34 small inhibitory RNA (siRNA).

Results

Synergism was demonstrated between RT and NV1066 across a wide range of doses. As a result of such synergism, a dose-reduction for each agent (up to 5500-fold) can be accomplished over a wide range of therapeutic-effect levels without sacrificing tumor cell kill. This effect is correlated with increased GADD34 expression and inhibited by transfection of siRNA directed against GADD34.

Conclusions

RT can be combined with oncolytic herpes simplex virus therapy in the treatment of malignant pleural mesothelioma to achieve synergistic efficacy while minimizing dosage and toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.

Similar content being viewed by others

References

  1. Rusch V, Saltz L, Venkatraman E, et al. A phase II trial of pleurectomy/decortication followed by intrapleural and systemic chemotherapy for malignant pleural mesothelioma. J Clin Oncol 1994;12:1156–63

    PubMed  CAS  Google Scholar 

  2. Price B. Analysis of current trends in United States mesothelioma incidence. Am J Epidemiol 1997;145:211–8

    PubMed  CAS  Google Scholar 

  3. Antman KH. Natural history and epidemiology of malignant mesothelioma. Chest 1993;103(4 Suppl):373S–6S

    Article  PubMed  CAS  Google Scholar 

  4. Takahashi K. Emerging health effects of asbestos in Asia. Presented at: Global Asbestos Congress, November 21, 2004. Tokyo, Japan

  5. Connelly RR, Spirtas R, Myers MH, Percy CL, Fraumeni JF Jr. Demographic patterns for mesothelioma in the United States. J Natl Cancer Inst 1987;78:1053–60

    PubMed  CAS  Google Scholar 

  6. Walker AM, Loughlin JE, Friedlander ER, Rothman KJ, Dreyer NA. Projections of asbestos-related disease 1980–2009. J Occup Med 1983;25:409–25

    PubMed  CAS  Google Scholar 

  7. Kukreja J, Jaklitsch MT, Wiener DC, Sugarbaker DJ, Burgers S, Baas P. Malignant pleural mesothelioma: overview of the North American and European experience. Thorac Surg Clin 2004;14:435–45

    Article  PubMed  Google Scholar 

  8. Rusch VW, Rosenzweig K, Venkatraman E, et al. A phase II trial of surgical resection and adjuvant high-dose hemithoracic radiation for malignant pleural mesothelioma. J Thorac Cardiovasc Surg 2001;122:788–95

    Article  PubMed  CAS  Google Scholar 

  9. Baldini EH, Recht A, Strauss GM, et al. Patterns of failure after trimodality therapy for malignant pleural mesothelioma. Ann Thorac Surg 1997;63:334–8

    Article  PubMed  CAS  Google Scholar 

  10. de Graaf-Strukowska L, van der Zee J, van Putten W, Senan S. Factors influencing the outcome of radiotherapy in malignant mesothelioma of the pleura—a single-institution experience with 189 patients. Int J Radiat Oncol Biol Phys 1999;43:511–6

    Article  PubMed  Google Scholar 

  11. Ebright MI, Zager JS, Malhotra S, et al. Replication-competent herpes virus NV1020 as direct treatment of pleural cancer in a rat model. J Thorac Cardiovasc Surg 2002;124:123–9

    Google Scholar 

  12. Stanziale SF, Petrowsky H, Adusumilli PS, Ben Porat L, Gonen M, Fong Y. Infection with oncolytic herpes simplex virus-1 induces apoptosis in neighboring human cancer cells: a potential target to increase anticancer activity. Clin Cancer Res 2004;10:3225–32

    Article  PubMed  CAS  Google Scholar 

  13. Adusumilli PS, Stiles BM, Chan MK, et al. Radiation therapy potentiates effective oncolytic viral therapy in the treatment of lung cancer. Ann Thorac Surg 2005;80:409–16

    Article  PubMed  Google Scholar 

  14. Eisenberg DP, Adusumilli PS, Hendershott KJ, et al. 5-Fluorouracil and gemcitabine potentiate the efficacy of oncolytic herpes viral gene therapy in the treatment of pancreatic cancer. J Gastrointest Surg 2005;9:1068–79

    Article  PubMed  Google Scholar 

  15. Adusumilli PS, Chan MK, Chun YS, et al. Cisplatin-induced GADD34 upregulation potentiates oncolytic viral therapy in the treatment of malignant pleural mesothelioma. Cancer Biol Ther 2006;5:48–53

    Article  PubMed  CAS  Google Scholar 

  16. Adusumilli PS, Stiles BM, Chan MK, et al. Real-time diagnostic imaging of tumors and metastases by use of a replication-competent herpes vector to facilitate minimally-invasive oncological surgery. FASEB J 2006;20:726–8

    PubMed  CAS  Google Scholar 

  17. Kim SH, Wong RJ, Kooby DA, et al. Combination of mutated herpes simplex virus type 1 (G207 virus) with radiation for the treatment of squamous cell carcinoma of the head and neck. Eur J Cancer 2005;41:313–22

    Article  PubMed  CAS  Google Scholar 

  18. Wong RJ, Joe JK, Kim SH, Shah JP, Horsburgh B, Fong Y. Oncolytic herpesvirus effectively treats murine squamous cell carcinoma and spreads by natural lymphatics to treat sites of lymphatic metastases. Hum Gene Ther 2002;13:1213–23

    Article  PubMed  CAS  Google Scholar 

  19. Sterman DH, Kaiser LR, Albelda SM. Gene therapy for malignant pleural mesothelioma. Hematol Oncol Clin North Am 1998;12:553–68

    Article  PubMed  CAS  Google Scholar 

  20. Adusumilli PS, Stiles BM, Chan MK, et al. Imaging and therapy of malignant pleural mesothelioma using replication-competent herpes simplex viruses. J Gene Med 2006;8:603–15

    Article  PubMed  CAS  Google Scholar 

  21. Advani SJ, Sibley GS, Song PY, et al. Enhancement of replication of genetically engineered herpes simplex viruses by ionizing radiation: a new paradigm for destruction of therapeutically intractable tumors. Gene Ther 1998;5:160–5

    Article  PubMed  CAS  Google Scholar 

  22. Chung SM, Advani SJ, Bradley JD, et al. The use of a genetically engineered herpes simplex virus (R7020) with ionizing radiation for experimental hepatoma. Gene Ther 2002;9:75–80

    Article  PubMed  CAS  Google Scholar 

  23. Mezhir JJ, Advani SJ, Smith KD, et al. Ionizing radiation activates late herpes simplex virus 1 promoters via the p38 pathway in tumors treated with oncolytic viruses. Cancer Res 2005;65:9479–84

    Article  PubMed  CAS  Google Scholar 

  24. Stanziale SF, Petrowsky H, Joe JK, et al. Ionizing radiation potentiates the antitumor efficacy of oncolytic herpes simplex virus G207 by upregulating ribonucleotide reductase. Surgery 2002;132:353–9

    Article  PubMed  Google Scholar 

  25. Hollander MC, Zhan Q, Bae I, Fornace AJ Jr. Mammalian GADD34, an apoptosis- and DNA damage-inducible gene. J Biol Chem 1997;272:13731–7

    Article  PubMed  CAS  Google Scholar 

  26. Chou J, Roizman B. Herpes simplex virus 1 gamma34.5 gene function, which blocks the host response to infection, maps in the homologous domain of the genes expressed during growth arrest and DNA damage. Proc Natl Acad Sci USA 1994;91:5247–51

    Article  PubMed  CAS  Google Scholar 

  27. Jarnagin WR, Zager JS, Hezel M, et al. Treatment of cholangiocarcinoma with oncolytic herpes simplex virus combined with external beam radiation therapy. Cancer Gene Ther 2006;13:326–34

    Article  PubMed  CAS  Google Scholar 

  28. Chou TC, Talalay P. Quantitative analysis of dose-effect relationships: The combined effects of multiple drugs or enzyme inhibitors. Adv Enz Regul 1984;22:27–55

    Article  CAS  Google Scholar 

  29. The siRNA user guide. Revised May 6, 2004. Rockefeller University, New York. Available at: http://www.rockefeller.edu/labheads/tuschl/sirna.html. Accessed September 3, 2006

  30. Ahamad A, Stevens CW, Smythe WR, et al. Intensity-modulated radiation therapy: a novel approach to the management of malignant pleural mesothelioma. Int J Radiat Oncol Biol Phys 2003;55:768–75

    Article  PubMed  Google Scholar 

  31. Forster KM, Smythe WR, Starkschall G, et al. Intensity-modulated radiotherapy following extrapleural pneumonectomy for the treatment of malignant mesothelioma: clinical implementation. Int J Radiat Oncol Biol Phys 2003;55:606–16

    Article  PubMed  Google Scholar 

  32. Sugarbaker DJ, Garcia JP, Richards WG, et al. Extrapleural pneumonectomy in the multimodality therapy of malignant pleural mesothelioma: results in 120 consecutive patients. Ann Surg 1996;224:288–94

    Article  PubMed  CAS  Google Scholar 

  33. Senan S. Indications and limitations of radiotherapy in malignant pleural mesothelioma. Curr Opin Oncol 2003;15:144–7

    Article  PubMed  Google Scholar 

  34. Zellos LS, Sugarbaker DJ. Multimodality treatment of diffuse malignant pleural mesothelioma. Semin Oncol 2002;29:41–50

    Article  PubMed  Google Scholar 

  35. Rusch VW, Venkatraman ES. Important prognostic factors in patients with malignant pleural mesothelioma, managed surgically. Ann Thorac Surg 1999;68:1799–804

    Article  PubMed  CAS  Google Scholar 

  36. Bennett JJ, Adusumilli P, Petrowsky H, et al. Up-regulation of GADD34 mediates the synergistic anticancer activity of mitomycin C and a gamma134.5 deleted oncolytic herpes virus (G207). FASEB J 2004;18:1001–3

    PubMed  CAS  Google Scholar 

  37. Advani SJ, Chung SM, Yan SY, et al. Replication-competent, nonneuroinvasive genetically engineered herpes virus is highly effective in the treatment of therapy-resistant experimental human tumors. Cancer Res 1999;59:2055–8

    PubMed  CAS  Google Scholar 

  38. Aghi M, Rabkin S, Martuza RL. Effect of chemotherapy-induced DNA repair on oncolytic herpes simplex viral replication. J Natl Cancer Inst 2006;98:38–50

    Article  PubMed  CAS  Google Scholar 

  39. Curiel DT, Zhu ZB. Combining chemotherapy with virotherapy: a novel treatment strategy for malignant pleural mesothelioma. Cancer Biol Ther 2006;5:236–7

    Article  PubMed  CAS  Google Scholar 

  40. Elshami AA, Kucharczuk JC, Zhang HB, et al. Treatment of pleural mesothelioma in an immunocompetent rat model utilizing adenoviral transfer of the herpes simplex virus thymidine kinase gene. Hum Gene Ther 1996;7:141–8

    PubMed  CAS  Google Scholar 

  41. Gridley DS, Slater JM. Combining gene therapy and radiation against cancer. Curr Gene Ther 2004;4:231–48

    PubMed  CAS  Google Scholar 

  42. Chmura SJ, Advani SJ, Kufe DW, Weichselbaum RR. Strategies for enhancing viral-based gene therapy using ionizing radiation. Radiat Oncol Investig 1999;7:261–9

    Article  PubMed  CAS  Google Scholar 

  43. Luo X, Andres ML, Timiryasova TM, Fodor I, Slater JM, Gridley DS. Radiation-enhanced endostatin gene expression and effects of combination treatment. Technol Cancer Res Treat 2005;4:193–202

    PubMed  Google Scholar 

  44. Hollander MC, Poola-Kella S, Fornace AJ Jr. Gadd34 functional domains involved in growth suppression and apoptosis. Oncogene 2003;22:3827–32

    Article  PubMed  CAS  Google Scholar 

  45. Hollander MC, Sheikh MS, Yu K, et al. Activation of Gadd34 by diverse apoptotic signals and suppression of its growth inhibitory effects by apoptotic inhibitors. Int J Cancer 2001;96:22–31

    Article  PubMed  CAS  Google Scholar 

  46. Kramm CM, Chase M, Herrlinger U, et al. Therapeutic efficiency and safety of a second-generation replication-conditional HSV1 vector for brain tumor gene therapy. Hum Gene Ther 1997;8:2057–68

    PubMed  CAS  Google Scholar 

  47. Chung RY, Saeki Y, Chiocca EA. B-myb promoter retargeting of herpes simplex virus gamma34.5 gene-mediated virulence toward tumor and cycling cells. J Virol 1999;73:7556–64

    PubMed  CAS  Google Scholar 

  48. Chou J, Chou TC. Quantitation of synergism and antagonism of two or more drugs by computerized analysis. In: Chou TC, Rideout DC, eds. Synergism and Antagonism in Chemotherapy. San Diego: Academic Press, 1991: pp 223–44

    Google Scholar 

  49. Rosenzweig KE, Fox JL, Zelefsky MJ, Raben A, Harrison LB, Rusch VW. A pilot trial of high-dose-rate intraoperative radiation therapy for malignant pleural mesothelioma. Brachytherapy 2005;4:30–3

    Article  PubMed  Google Scholar 

  50. Yajnik S, Rosenzweig KE, Mychalczak B, et al. Hemithoracic radiation after extrapleural pneumonectomy for malignant pleural mesothelioma. Int J Radiat Oncol Biol Phys 2003;56:1319–26

    Article  PubMed  Google Scholar 

  51. Hakkinen AM, Laasonen A, Linnainmaa K, Mattson K, Pyrhonen S. Radiosensitivity of mesothelioma cell lines. Acta Oncol 1996;35:451–6

    PubMed  CAS  Google Scholar 

  52. Curran D, Sahmoud T, Therasse P, van MJ, Postmus PE, Giaccone G. Prognostic factors in patients with pleural mesothelioma: the European Organization for Research and Treatment of Cancer Experience. J Clin Oncol 1998;16:145–52

    PubMed  CAS  Google Scholar 

  53. Lilley CE, Carson CT, Muotri AR, Gage FH, Weitzman MD. DNA repair proteins affect the lifecycle of herpes simplex virus 1. Proc Natl Acad Sci USA 2005;102:5844–9

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported in part by AACR-Astra Zeneca Cancer Research and Prevention Foundation Fellowship (P.S.A), grants RO1 CA 75416 and RO1 CA/DK80982 (Y.F.) from the National Institutes of Health, grant MBC-99366 (Y.F.) from the American Cancer Society, grant BC024118 from the U.S. Army (Y.F.), grant IMG0402501 from the Susan G. Komen Breast Cancer Foundation (Y.F. and P.S.A.), grant 032047 from the Flight Attendant Medical Research Institute (Y.F. and P.S.A.), and William H. Goodwin and Alice Goodwin and the Commonwealth Foundation for Cancer Research grant—The Experimental Therapeutics Center of Memorial Sloan-Kettering Cancer Center (Y.F).

The authors thank Medigene, Inc., for providing the NV1066 virus; Liza Marsh of the Department of Surgery at Memorial Sloan-Kettering Cancer Center for editorial assistance; and Yuhong She, MD, and Wong Wai, MS, of the Anti-Tumor Core Facility at Memorial Sloan-Kettering Cancer Center for their assistance with this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuman Fong MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adusumilli, P.S., Chan, MK., Hezel, M. et al. Radiation-Induced Cellular DNA Damage Repair Response Enhances Viral Gene Therapy Efficacy in the Treatment of Malignant Pleural Mesothelioma. Ann Surg Oncol 14, 258–269 (2007). https://doi.org/10.1245/s10434-006-9127-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-006-9127-4

Keywords

Navigation