Skip to main content
Log in

Implication of the BRCA2 and Putative “BRCA3” Genes in Dukes’ Stage C, Replication Error–Negative Colon Cancer

  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Although BRCA genes have been implicated in certain tumors, particularly breast tumors, their role in colon tumorigenesis has not been fully explored. We aimed to investigate the association of the BRCA2 and putative “BRCA3” genes in a homogeneous series of right-sided colon cancer specimens.

Methods

Twenty-three Dukes’ stage C, replication error–negative carcinomas were selected from patients with right-sided colon cancer. After histological examination and microdissection, DNA was extracted from normal colon and carcinoma from each patient. Five microsatellite markers spanning the region of BRCA2 and BRCA3 on chromosome 13 (D13S218, D13S219, D13S165, D13S156, and D13S160) and two markers intragenic to BRCA2 and BRCA3 (D13S171 and D13S1308, respectively) were used. Polymerase chain reaction products were analyzed by using a fluorescent allele imbalance assay.

Results

Markers demonstrating the highest allelic imbalance were D13S1308 (53%), D13S171 (33%), and D13S160 (37%).

Conclusions

The intragenic markers D13S1308 (BRCA3) and D13S171 (BRCA2) on chromosome 13 demonstrated a high frequency of allelic imbalance in primary colon carcinoma. This suggests an involvement of BRCA2 and putative BRCA3 in colon tumorigenesis in right-sided, replication error–negative, Dukes’ stage C cancers. Further studies are needed to confirm the precise role of these genes, and any prognostic significance, in colon cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Vogelstein B, Fearon ER, Kern SE, et al. Allelotype of colorectal carcinomas. Science 1989;244:207–11

    CAS  PubMed  Google Scholar 

  2. Vogelstein B, Fearon ER, Hamilton SR, et al. Genetic alterations during colorectal-tumor development. N Engl J Med 1988;319:525–32

    Article  CAS  PubMed  Google Scholar 

  3. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990;61:759–67

    Article  CAS  PubMed  Google Scholar 

  4. Tomlinson I, Ilyas M, Johnson V, et al. A comparison of the genetic pathways involved in the pathogenesis of three types of colorectal cancer. J Pathol 1998;184:148–52

    Article  CAS  PubMed  Google Scholar 

  5. Fearon ER, Hamilton SR, Vogelstein B. Clonal analysis of human colorectal tumors. Science 1987;238:193–7

    CAS  PubMed  Google Scholar 

  6. Ried T, Knutzen R, Steinbeck R, et al. Comparative genomic hybridization reveals a specific pattern of chromosomal gains and losses during the genesis of colorectal tumors. Genes Chromosomes Cancer 1996;15:234–45

    Article  CAS  PubMed  Google Scholar 

  7. Nakao K, Shibusawa M, Ishihara A, et al. Genetic changes in colorectal carcinoma tumors with liver metastases analyzed by comparative genomic hybridization and DNA ploidy. Cancer 2001;91:721–6

    Article  CAS  PubMed  Google Scholar 

  8. Lothe RA, Fossli T, Danielsen HE, et al. Molecular genetic studies of tumor suppressor gene regions on chromosomes 13 and 17 in colorectal tumors. J Natl Cancer Inst 1992;84:1100–8

    CAS  PubMed  Google Scholar 

  9. Meijer GA, Hermsen MA, Baak JP, et al. Progression from colorectal adenoma to carcinoma is associated with non-random chromosomal gains as detected by comparative genomic hybridisation. J Clin Pathol 1998;51:901–9

    Article  CAS  PubMed  Google Scholar 

  10. Ookawa K, Sakamoto M, Hirohashi S, et al. Concordant p53 and DCC alterations and allelic losses on chromosomes 13q and 14q associated with liver metastases of colorectal carcinoma. Int J Cancer 1993;53:382–7

    CAS  PubMed  Google Scholar 

  11. Sivarajasingham NS, Baker R, Tilsed JV, Greenman J, Monson JR, Cawkwell L. Identifying a region of interest in site- and stage-specific colon cancer on chromosome 13. Ann Surg Oncol 2003;10:1095–9

    Article  PubMed  Google Scholar 

  12. Fasouliotis SJ, Schenker JG. BRCA1 and BRCA2 gene mutations: decision-making dilemmas concerning testing and management. Obstet Gynecol Surv 2000;55:373–84

    Article  CAS  PubMed  Google Scholar 

  13. Kainu T, Juo SH, Desper R, et al. Somatic deletions in hereditary breast cancers implicate 13q21 as a putative novel breast cancer susceptibility locus. Proc Natl Acad Sci U S A 2000;97:9603–8

    Article  CAS  PubMed  Google Scholar 

  14. Ford D, Easton DF, Stratton M, et al. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am J Hum Genet 1998;62:676–89

    Article  CAS  PubMed  Google Scholar 

  15. Vehmanen P, Friedman LS, Eerola H, et al. Low proportion of BRCA1 and BRCA2 mutations in Finnish breast cancer families: evidence for additional susceptibility genes. Hum Mol Genet 1997;6:2309–15

    Article  CAS  PubMed  Google Scholar 

  16. Narod SA, Foulkes WD. BRCA1 and BRCA2: 1994 and beyond. Nat Rev Cancer 2004;4:665–76

    Article  CAS  PubMed  Google Scholar 

  17. Gorgoulis VG, Kotsinas A, Zacharatos P, et al. Association of allelic imbalance at locus D13S171 (BRCA2) and p53 alterations with tumor kinetics and chromosomal instability (aneuploidy) in nonsmall cell lung carcinoma. Cancer 2000;89:1933–45

    Article  CAS  PubMed  Google Scholar 

  18. Tavtigian SV, Simard J, Rommens J, et al. The complete BRCA2 gene and mutations in chromosome 13q-linked kindreds. Nat Genet 1996;12:333–7

    Article  CAS  PubMed  Google Scholar 

  19. Moynahan ME, Cui TY, Jasin M. Homology-directed DNA repair, mitomycin-c resistance, and chromosome stability is restored with correction of a BRCA1 mutation. Cancer Res 2001;61:4842–50

    CAS  PubMed  Google Scholar 

  20. Moynahan ME, Pierce AJ, Jasin M. BRCA2 is required for homology-directed repair of chromosomal breaks. Mol Cell 2001;7:263–72

    Article  CAS  PubMed  Google Scholar 

  21. Davies AA, Masson JY, McIlwraith MJ, et al. Role of BRCA2 in control of the RAD51 recombination and DNA repair protein. Mol Cell 2001;7:273–82

    Article  CAS  PubMed  Google Scholar 

  22. Pellegrini L, Yu DS, Lo T, et al. Insights into DNA recombination from the structure of a RAD51-BRCA2 complex. Nature 2002;420:287–93

    Article  CAS  PubMed  Google Scholar 

  23. Thompson D, Szabo CI, Mangion J, et al. Evaluation of linkage of breast cancer to the putative BRCA3 locus on chromosome 13q21 in 128 multiple case families from the Breast Cancer Linkage Consortium. Proc Natl Acad Sci U S A 2002;99:827–31

    Article  CAS  PubMed  Google Scholar 

  24. Tong D, Schuster E, Czerwenka K, Leodolter S, Zeillinger R. Loss of heterozygosity on chromosome 13q: suggestion of a candidate tumor suppressor gene in sporadic breast cancer. Breast Cancer Res Treat 2004;83:143–8

    Article  CAS  PubMed  Google Scholar 

  25. Lindblom A. Different mechanisms in the tumorigenesis of proximal and distal colon cancers. Curr Opin Oncol 2001;13:63–9

    Article  CAS  PubMed  Google Scholar 

  26. Kapiteijn E, Liefers GJ, Los LC, et al. Mechanisms of oncogenesis in colon versus rectal cancer. J Pathol 2001;195:171–8

    Article  CAS  PubMed  Google Scholar 

  27. Distler P, Holt PR. Are right- and left-sided colon neoplasms distinct tumors? Dig Dis 1997;15:302–11

    Article  CAS  PubMed  Google Scholar 

  28. Cawkwell L, Gray S, Murgatroyd H, et al. Choice of management strategy for colorectal cancer based on a diagnostic immunohistochemical test for defective mismatch repair. Gut 1999;45:409–15

    Article  CAS  PubMed  Google Scholar 

  29. Cawkwell L, Bell SM, Lewis FA, Dixon MF, Taylor GR, Quirke P. Rapid detection of allele loss in colorectal tumors using microsatellites and fluorescent DNA technology. Br J Cancer 1993;67:1262–7

    CAS  PubMed  Google Scholar 

  30. Cawkwell L, Lewis FA, Quirke P. Frequency of allele loss of DCC, p53, RBI, WT1, NF1, NM23 and APC/MCC in colorectal cancer assayed by fluorescent multiplex polymerase chain reaction. Br J Cancer 1994;70:813–8

    CAS  PubMed  Google Scholar 

  31. Skotheim RI, Diep CB, Kraggerud SM, Jakobsen KS, Lothe RA. Evaluation of loss of heterozygosity/allelic imbalance scoring in tumor DNA. Cancer Genet Cytogenet 2001;127:64–70

    Article  CAS  PubMed  Google Scholar 

  32. Fujiwara Y, Emi M, Ohata H, et al. Evidence for the presence of two tumor suppressor genes on chromosome 8p for colorectal carcinoma. Cancer Res 1993;53:1172–4

    CAS  PubMed  Google Scholar 

  33. Garcia JM, Rodriguez R, Dominguez G, et al. Prognostic significance of the allelic loss of the BRCA1 gene in colorectal cancer. Gut 2003;52:1756–63

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by a pump-priming grant from the Royal College of Surgeons of England. N.S.S. was a recipient of The Henry Chatterton Cancer Research Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynn Cawkwell PhD.

Additional information

This article was previously published in abstract form (Sivarajasingham NS, Cawkwell L, Tilsed JV, Greenman J, Monson JRT. Implication of BRCA genes in colon tumorigenesis. Ann Surg Oncol 2004;11:S114).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sivarajasingham, N.S., Cawkwell, L., Baker, R.P. et al. Implication of the BRCA2 and Putative “BRCA3” Genes in Dukes’ Stage C, Replication Error–Negative Colon Cancer. Ann Surg Oncol 13, 881–886 (2006). https://doi.org/10.1245/ASO.2006.05.021

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/ASO.2006.05.021

Keywords

Navigation