Skip to main content

Advertisement

Log in

New Approaches to the Treatment of Hepatic Malignancies Angiogenesis and Antiangiogenic Therapy of Colon Cancer Liver Metastasis

  • Original Articles
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

The fact that tumor growth and metastatic spread relies on angiogenesis has been widely proven and accepted. The understanding of cancer biology and metastasis formation has led to the development of new therapeutic approaches that target tumor biology. The survival and establishment of metastatic lesions depend on a shift in the normal balance of proangiogenic and antiangiogenic factors that favor angiogenesis. Colorectal cancer is one of the leading cancer deaths worldwide. Angiogenesis has been associated with colon cancer progression and metastatic spread, thereby significantly affecting patient survival. New experimental approaches that inhibit angiogenic processes have demonstrated promising antineoplastic effects on metastatic colorectal cancer and are partially being investigated in clinical trials. This review focuses on angiogenesis in colorectal cancer metastasis formation as a target for antiangiogenic therapy, describing the experience from experimental studies and current clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. American Cancer Society. Cancer Facts and Figures 2001. Cancer Statistics 2001. Atlanta, GA: American Cancer Society, 2001: 1–44.

    Google Scholar 

  2. Scheele J, Stang R, Altendorf-Hofmann A, Paul M. Resection of colorectal liver metastases. World J Surg 1995; 19: 59–71.

    PubMed  CAS  Google Scholar 

  3. Martin LW, Warren RS. Current management of colorectal liver metastases. Surg Oncol Clin North Am 2000; 9: 853–76,discussion 877–8.

    CAS  Google Scholar 

  4. Jaeck D, Bachellier P, Weber JC, Mourad M, Walf P, Boudjema K. Surgical treatment of synchronous hepatic metastases of colorectal cancers. Simultaneous or delayed resection (in French)? Ann Chir 1996; 50: 507–12.

    PubMed  CAS  Google Scholar 

  5. Scheele J, Stangl R, Schmidt K, Altendorf-Hofmann A. Recurrent tumor after R0 resection of colorectal liver metastases. Incidence, resectability and prognosis. Chirurg 1995; 66: 965–73.

    PubMed  CAS  Google Scholar 

  6. Saltz L, Rubin M, Hochster H, et al. Cetuximab (IMC-225) plus irinotecan (CPT-11) is active in CPT-11-refractory colorectal cancer (CRC) that express epidermal growth factor receptor (EGFR). Proc Am Soc Clin Oncol 2001; 20: 7.

    Google Scholar 

  7. Folkman J. The role of angiogenesis in tumor growth. Semin Cancer Biol 1992; 3: 65–71.

    PubMed  CAS  Google Scholar 

  8. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995; 1: 27–31.

    PubMed  CAS  Google Scholar 

  9. Hanahan D, Christofori G, Naik P, Arbeit J. Transgenic mouse models of tumour angiogenesis: the angiogenic switch, its molecular controls, and prospects for preclinical therapeutic models. Eur J Cancer 1996; 32A: 2386–93.

    PubMed  CAS  Google Scholar 

  10. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996; 86: 353–64.

    PubMed  CAS  Google Scholar 

  11. Fukumura D, Xavier R, Sugiura T, et al. Tumor induction of VEGF promoter activity in stromal cells. Cell 1998; 94: 715–25.

    PubMed  CAS  Google Scholar 

  12. Fidler IJ, Ellis LM. The implications of angiogenesis to the biology and therapy of cancer metastasis. Cell 1994; 79: 185–8.

    PubMed  CAS  Google Scholar 

  13. Fidler IJ, Kumar R, Bielenberg DR, Ellis LM. Molecular determinants of angiogenesis in cancer metastasis. Cancer J Sci Am 1998; 4 (Suppl 1): S58–66.

    PubMed  Google Scholar 

  14. Ellis LM, Fidler IJ. Angiogenesis and metastasis. Eur J Cancer 1996; 32A: 2451–60.

    PubMed  CAS  Google Scholar 

  15. Takahashi Y, Bucana CD, Cleary KR, Ellis LM. p53, vessel count, and vascular endothelial growth factor expression in human colon cancer. Int J Cancer 1998; 79: 34–8.

    PubMed  CAS  Google Scholar 

  16. Folkman J. What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 1990; 82: 4–6.

    PubMed  CAS  Google Scholar 

  17. Bruns CJ, Liu W, Davis DW, et al. Vascular endothelial growth factor is an in vivo survival factor for tumor endothelium in a murine model of colorectal carcinoma liver metastases. Cancer 2000; 89: 488–99.

    PubMed  CAS  Google Scholar 

  18. Takebayashi Y, Aklyama S, Yamada K, Akiba S, Aikou T. Angiogenesis as an unfavorable prognostic factor in human colorectal carcinoma. Cancer 1996; 78: 226–31.

    PubMed  CAS  Google Scholar 

  19. Vermeulen PB, Van den Eynden GG, Huget P, et al. Prospective study of intratumoral microvessel density, p53 expression and survival in colorectal cancer. Br J Cancer 1999; 79: 316–22.

    PubMed  CAS  Google Scholar 

  20. Ellis LM, Takahashi Y, Liu W, Shaheen RM. Vascular endothelial growth factor in human colon cancer: biology and therapeutic implications. Oncologist 2000; 5 (Suppl 1): 11–5.

    PubMed  CAS  Google Scholar 

  21. Kondo Y, Arii S, Mori A, Furutani M, Chiba T, Imamura M. Enhancement of angiogenesis, tumor growth, and metastasis by transfection of vascular endothelial growth factor into LoVo human colon cancer cell line. Clin Cancer Res 2000; 6: 622–30.

    PubMed  CAS  Google Scholar 

  22. Andre T, Kotelevets L, Vaillant JC, et al. Vegf, Vegf-B, Vegf-C and their receptors KDR, FLT-1 and FLT-4 during the neoplastic progression of human colonic mucosa. Int J Cancer 2000; 86: 174–81.

    PubMed  CAS  Google Scholar 

  23. Keck PJ, Hauser SD, Krivi G, et al. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 1989; 246: 1309–12.

    PubMed  CAS  Google Scholar 

  24. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1989; 246: 1306–9.

    PubMed  CAS  Google Scholar 

  25. Plouet J, Schilling J, Gospodarowicz D. Isolation and characterization of a newly identified endothelial cell mitogen produced by AtT-20 cells. EMBO J 1989; 8: 3801–6.

    PubMed  CAS  Google Scholar 

  26. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 1983; 219: 983–5.

    PubMed  CAS  Google Scholar 

  27. Dvorak HF, Brown LF, Detmar M, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 1995; 146: 1029–39.

    PubMed  CAS  Google Scholar 

  28. Nicosia RF. What is the role of vascular endothelial growth factor-related molecules in tumor angiogenesis? Am J Pathol 1998; 153: 11–6.

    PubMed  CAS  Google Scholar 

  29. Tischer E, Mitchell R, Hartman T, et al. The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J Biol Chem 1991; 266: 11947–54.

    PubMed  CAS  Google Scholar 

  30. Houck KA, Ferrara N, Winer J, Cachianes G, Li B, Leung DW. The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol Endocrinol 1991; 5: 1806–14.

    PubMed  CAS  Google Scholar 

  31. Cheung N, Wong MP, Yuen ST, Leung SY, Chung LP. Tissue-specific expression pattern of vascular endothelial growth factor isoforms in the malignant transformation of lung and colon. Hum Pathol 1998; 29: 910–4.

    PubMed  CAS  Google Scholar 

  32. Tokunaga T, Oshika Y, Abe Y, et al. Vascular endothelial growth factor (VEGF) mRNA isoform expression pattern is correlated with liver metastasis and poor prognosis in colon cancer. Br J Cancer 1998; 77: 998–1002.

    PubMed  CAS  Google Scholar 

  33. Fournier E, Birnbaum D, Borg JP. Les recepteurs pour les facteurs de la famille du VEGF. Bull Cancer 1997; 84: 397–405.

    PubMed  CAS  Google Scholar 

  34. Peters KG, De Vries C, Williams LT. Vascular endothelial growth factor receptor expression during embryogenesis and tissue repair suggests a role in endothelial differentiation and blood vessel growth. Proc Natl Acad Sci U S A 1993; 90: 8915–9.

    PubMed  CAS  Google Scholar 

  35. Zebrowski BK, Yano S, Liu W, et al. Vascular endothelial growth factor levels and induction of permeability in malignant pleural effusions. Clin Cancer Res 1999; 5: 3364–8.

    PubMed  CAS  Google Scholar 

  36. Veikkola T, Karkkainen M, Claesson-Welsh L, Alitalo K. Regulation of angiogenesis via vascular endothelial growth factor receptors. Cancer Res 2000; 60: 203–12.

    PubMed  CAS  Google Scholar 

  37. Achen MG, Jeltsch M, Kukk E, et al. Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc Natl Acad Sci U S A 1998; 95: 548–53.

    PubMed  CAS  Google Scholar 

  38. Mandriota SJ, Jussila L, Jeltsch M, et al. Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J 2001; 20: 672–82.

    PubMed  CAS  Google Scholar 

  39. Marconcini L, Marchio S, Morbidelli L, et al. c-fos-induced growth factor/vascular endothelial growth factor D induces angiogenesis in vivo and in vitro. Proc Natl Acad Sci U S A 1999; 96: 9671–6.

    PubMed  CAS  Google Scholar 

  40. Paavonen K, Puolakkainen P, Jussila L, Jahkola T, Alitalo K. Vascular endothelial growth factor receptor-3 in lymphangiogenesis in wound healing. Am J Pathol 2000; 156: 1499–504.

    PubMed  CAS  Google Scholar 

  41. Stacker SA, Caesar C, Baldwin ME, et al. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 2001; 7: 186–91.

    PubMed  CAS  Google Scholar 

  42. Miao HQ, Klagsbrun M. Neuropilin is a mediator of angiogenesis. Cancer Metastasis Rev 2000; 19: 29–37.

    PubMed  CAS  Google Scholar 

  43. Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 1998; 92: 735–45.

    PubMed  CAS  Google Scholar 

  44. Ishikawa F, Miyazono K, Hellman U, et al. Identification of angiogenic activity and the cloning and expression of platelet-derived endothelial cell growth factor. Nature 1989; 338: 557–62.

    PubMed  CAS  Google Scholar 

  45. Takahashi Y, Bucana CD, Liu W, et al. Platelet-derived endothelial cell growth factor in human colon cancer angiogenesis: role of infiltrating cells. J Natl Cancer Inst 1996; 88: 1146–51.

    PubMed  CAS  Google Scholar 

  46. Amaya H, Tanigawa N, Lu C, et al. Association of vascular endothelial growth factor expression with tumor angiogenesis, survival and thymidine phosphorylase/platelet-derived endothelial cell growth factor expression in human colorectal cancer. Cancer Lett 1997; 119: 227–35.

    PubMed  CAS  Google Scholar 

  47. Saeki T, Tanada M, Takashima S, et al. Correlation between expression of platelet-derived endothelial cell growth factor (thymidine phosphorylase) and microvessel density in early-stage human colon carcinomas. Jpn J Clin Oncol 1997; 27: 227–30.

    PubMed  CAS  Google Scholar 

  48. Beckner ME. Factors promoting tumor angiogenesis. Cancer Invest 1999; 17: 594–623.

    Article  PubMed  CAS  Google Scholar 

  49. Shimoyama S, Yamasaki K, Kawahara M, Kaminishi M. Increased serum angiogenin concentration in colorectal cancer is correlated with cancer progression. Clin Cancer Res 1999; 5: 1125–30.

    PubMed  CAS  Google Scholar 

  50. Etoh T, Shibuta K, Barnard GF, Kitano S, Mori M. Angiogenin expression in human colorectal cancer: the role of focal macrophage infiltration. Clin Cancer Res 2000; 6: 3545–51.

    PubMed  CAS  Google Scholar 

  51. Papapetropoulos A, Garcia-Cardena G, Dengler TJ, Maisonpierre PC, Yancopoulos GD, Sessa WC. Direct actions of angiopoietin-1 on human endothelium: evidence for network stabilization, cell survival, and interaction with other angiogenic growth factors. Lab Invest 1999; 79: 213–23.

    PubMed  CAS  Google Scholar 

  52. Lauren J, Gunji Y, Alitalo K. Is angiopoietin-2 necessary for the initiation of tumor angiogenesis (letter, comment)? Am J Pathol 1998; 153: 1333–9.

    PubMed  CAS  Google Scholar 

  53. Davis S, Yancopoulos GD. The angiopoietins: yin and yang in angiogenesis. Curr Top Microbiol Immunol 1999; 237: 173–85.

    PubMed  CAS  Google Scholar 

  54. Ahmad SA, Liu W, Jung YD, et al. The effects of angiopoietin-1 and −2 on tumor growth and angiogenesis in human colon cancer. Cancer Res 2001; 61: 1255–9.

    PubMed  CAS  Google Scholar 

  55. Ahmad SA, Liu W, Jung YD, et al. Differential expression of angiopoietin-1 and angiopoietin-2 in colon carcinoma. A possible mechanism for the initiation of angiogenesis. Cancer 2001; 9: 1138–43.

    Google Scholar 

  56. Akagi Y, Liu W, Zebrowski B, Xie K, Ellis LM. Regulation of vascular endothelial growth factor expression in human colon cancer by insulin-like growth factor-I. Cancer Res 1998; 58: 4008–14.

    PubMed  CAS  Google Scholar 

  57. Hsu S, Huang F, Friedman E. Platelet-derived growth factor-B increases colon cancer cell growth in vivo by a paracrine effect. J Cell Physiol 1995; 165: 239–45.

    PubMed  CAS  Google Scholar 

  58. Messa C, Russo F, Caruso MG, Di Leo A. EGF, TGF-alpha, and EGF-R in human colorectal adenocarcinoma. Acta Oncol 1998; 37: 285–9.

    PubMed  CAS  Google Scholar 

  59. Tokunaga T, Nakamura M, Oshika Y, et al. Thrombospondin 2 expression is correlated with inhibition of angiogenesis and metastasis of colon cancer. Br J Cancer 1999; 79: 354–9.

    PubMed  CAS  Google Scholar 

  60. Maeda K, Nishiguchi Y, Kang SM, et al. Expression of thrombospondin-1 inversely correlated with tumor vascularity and hematogenous metastasis in colon cancer. Oncol Rep 2001; 8: 763–6.

    PubMed  CAS  Google Scholar 

  61. Kumar R, Fidler IJ. Angiogenic molecules and cancer metastasis. In Vivo 1998; 12: 27–34.

    PubMed  CAS  Google Scholar 

  62. Liotta LA, Stetler-Stevenson WG, Steeg PS. Cancer invasion and metastasis: positive and negative regulatory elements. Cancer Invest 1991; 9: 543–51.

    PubMed  CAS  Google Scholar 

  63. Fidler IJ. Critical factors in the biology of human cancer metastasis: twenty-eighth G.H.A. Clowes memorial award lecture. Cancer Res 1990; 50: 6130–8.

    PubMed  CAS  Google Scholar 

  64. Fidler IJ. Critical factors in the biology of human cancer metastasis. Am Surg 1995; 61: 1065–6.

    PubMed  CAS  Google Scholar 

  65. Singh RK, Gutman M, Bucana CD, et al. Interferons alpha and beta downregulate the expression of basic fibroblast growth factor in human carcinoma. Proc Natl Acad Sci U S A 1995; 92: 4562–6.

    PubMed  CAS  Google Scholar 

  66. Kitadai Y, Ellis LM, Takahashi Y, et al. Multiparametric in situ messenger RNA hybridization analysis to detect metastasis-related genes in surgical specimens of human colon carcinomas. Clin Cancer Res 1995; 1: 1095–102.

    PubMed  CAS  Google Scholar 

  67. Paget S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 1989; 8: 98–101.

    PubMed  CAS  Google Scholar 

  68. Radinsky R, Ellis LM. Molecular determinants in the biology of liver metastasis. Surg Oncol Clin North Am 1996; 5: 215–29.

    CAS  Google Scholar 

  69. Pardanaud L, Altmann C, Kitos P, Dieterlen-Lievre F, Buck CA. Vasculogenesis in the early quail blastodisc as studied with a monoclonal antibody recognizing endothelial cells. Development 1987; 100: 339–49.

    PubMed  CAS  Google Scholar 

  70. Takahashi Y, Kitadai Y, Bucana CD, Cleary KR, Ellis LM. Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer. Cancer Res 1995; 55: 3964–8.

    PubMed  CAS  Google Scholar 

  71. Jung YD, Ahmad SA, Akagi Y, et al. Role of the tumor microenvironment in mediating response to anti-angiogenic therapy. Cancer Metastasis Rev 2000; 19: 147–57.

    PubMed  CAS  Google Scholar 

  72. Ackerman NB. The blood supply of experimental liver metastases. IV. Changes in vascularity with increasing tumor growth. Surgery 1974; 75: 589–96.

    PubMed  CAS  Google Scholar 

  73. Archer SG, Gray BN. Vascularization of small liver metastases. Br J Surg 1989; 76: 545–8.

    PubMed  CAS  Google Scholar 

  74. Strohmeyer T, Haugeberg G, Lierse W. Angioarchitecture and blood supply of micro- and macrometastases in human livers. An anatomic-pathological investigation using injection-techniques. J Hepatol 1987; 4: 181–9.

    PubMed  CAS  Google Scholar 

  75. Terayama N, Terada T, Nakanuma Y. An immunohistochemical study of tumour vessels in metastatic liver cancers and the surrounding liver tissue. Histopathology 1996; 29: 37–43.

    PubMed  CAS  Google Scholar 

  76. Terayama N, Terada T, Nakanuma Y. Histologic growth patterns of metastatic carcinomas of the liver. Jpn J Clin Oncol 1996; 26: 24–9.

    PubMed  CAS  Google Scholar 

  77. Parker C, Roseman BJ, Bucana CD, Tsan R, Radinsky R. Preferential activation of the epidermal growth factor receptor in human colon carcinoma liver metastases in nude mice. J Histochem Cytochem 1998; 46: 595–602.

    PubMed  CAS  Google Scholar 

  78. Gervaz P, Scholl B, Mainguene C, Poitry S, Gillet M, Wexner S. Angiogenesis of liver metastases: role of sinusoidal endothelial cells. Dis Colon Rectum 2000; 43: 980–6.

    PubMed  CAS  Google Scholar 

  79. Paku S, Lapis K. Morphological aspects of angiogenesis in experimental liver metastases. Am J Pathol 1993; 143: 926–36.

    PubMed  CAS  Google Scholar 

  80. Warren RS, Yuan H, Matli MR, Gillett NA, Ferrara N. Regulation by vascular endothelial growth factor of human colon cancer tumorigenesis in a mouse model of experimental liver metastasis. J Clin Invest 1995; 95: 1789–97.

    PubMed  CAS  Google Scholar 

  81. Fukumura D, Yuan F, Monsky WL, Chen Y, Jain RK. Effect of host microenvironment on the microcirculation of human colon adenocarcinoma. Am J Pathol 1997; 151: 679–88.

    PubMed  CAS  Google Scholar 

  82. Tsai JC, Goldman CK, Gillespie GY. Vascular endothelial growth factor in human glioma cell lines: induced secretion by EGF, PDGF-BB, and bFGF. J Neurosurg 1995; 82: 864–73.

    Article  PubMed  CAS  Google Scholar 

  83. Michalopoulos GK. Liver regeneration: molecular mechanisms of growth control. FASEB J 1990; 4: 176–87.

    PubMed  CAS  Google Scholar 

  84. Tong WM, Kallay E, Hofer H, et al. Growth regulation of human colon cancer cells by epidermal growth factor and 1,25-dihydroxyvitamin D3 is mediated by mutual modulation of receptor expression. Eur J Cancer 1998; 34: 2119–25.

    PubMed  CAS  Google Scholar 

  85. Fujita S, Sugano K. Expression of c-met proto-oncogene in primary colorectal cancer and liver metastases. Jpn J Clin Oncol 1997; 27: 378–83.

    PubMed  CAS  Google Scholar 

  86. Guo YS, Narayan S, Yallampalli C, Singh P. Characterization of insulinlike growth factor I receptors in human colon cancer. Gastroenterology 1992; 102: 1101–8.

    PubMed  CAS  Google Scholar 

  87. Picon A, Gold LI, Wang J, Cohen A, Friedman E. A subset of metastatic human colon cancers expresses elevated levels of transforming growth factor beta1. Cancer Epidemiol Biomarkers Prev 1998; 7: 497–504.

    PubMed  CAS  Google Scholar 

  88. Shi Q, Abbruzzese JL, Huang S, Fidler IJ, Xiong Q, Xie K. Constitutive and inducible interleukin 8 expression by hypoxia and acidosis renders human pancreatic cancer cells more tumorigenic and metastatic. Clin Cancer Res 1999; 5: 3711–21.

    PubMed  CAS  Google Scholar 

  89. Abramovitch R, Dafni H, Neeman M, Nagler A, Pines M. Inhibition of neovascularization and tumor growth, and facilitation of wound repair, by halofuginone, an inhibitor of collagen type I synthesis. Neoplasia 1999; 1: 321–9.

    PubMed  CAS  Google Scholar 

  90. Klein SA, Bond SJ, Gupta SC, Yacoub OA, Anderson GL. Angiogenesis inhibitor TNP-470 inhibits murine cutaneous wound healing. J Surg Res 1999; 82: 268–74.

    PubMed  CAS  Google Scholar 

  91. Bloch W, Huggel K, Sasaki T, et al. The angiogenesis inhibitor endostatin impairs blood vessel maturation during wound healing. FASEB J 2000; 14: 2373–6.

    PubMed  CAS  Google Scholar 

  92. Berger AC, Feldman AL, Gnant MF, et al. The angiogenesis inhibitor, endostatin, does not affect murine cutaneous wound healing. J Surg Res 2000; 91: 26–31.

    PubMed  CAS  Google Scholar 

  93. Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 1986; 315: 1650–9.

    Article  PubMed  CAS  Google Scholar 

  94. Gutman M, Fidler IJ. Biology of human colon cancer metastasis. World J Surg 1995; 19: 226–34.

    PubMed  CAS  Google Scholar 

  95. Auerbach R. Vascular endothelial cell differentiation: organ-specificity and selective affinities as the basis for developing anti-cancer strategies. Int J Radiat Biol 1991; 60: 1–10.

    PubMed  CAS  Google Scholar 

  96. Fong TA, Shawver LK, Sun L, et al. SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res 1999; 59: 99–106.

    PubMed  CAS  Google Scholar 

  97. Shaheen RM, Davis DW, Liu W, et al. Antiangiogenic therapy targeting the tyrosine kinase receptor for vascular endothelial growth factor receptor inhibits the growth of colon cancer liver metastasis and induces tumor and endothelial cell apoptosis. Cancer Res 1999; 59: 5412–6.

    PubMed  CAS  Google Scholar 

  98. Ciardiello F, Bianco R, Damiano V, et al. Antiangiogenic and antitumor activity of anti-epidermal growth factor receptor C225 monoclonal antibody in combination with vascular endothelial growth factor antisense oligonucleotide in human GEO colon cancer cells. Clin Cancer Res 2000; 6: 3739–47.

    PubMed  CAS  Google Scholar 

  99. Radinsky R, Risin, Fan, et al. Level and function of epidermal growth factor receptor predict the metastatic potential of human colon carcinoma cells. Clin Cancer Res 1995; 1: 19–31.

    PubMed  CAS  Google Scholar 

  100. Eliceiri BP, Cheresh DA. The role of alphav integrins during angiogenesis: insights into potential mechanisms of action and clinical development. J Clin Invest 1999; 103: 1227–30.

    PubMed  CAS  Google Scholar 

  101. Scatena M, Almeida M, Chaisson ML, Fausto N, Nicosia RF, Giachelli CM. NF-kappaB mediates alphavbeta3 integrin-induced endothelial cell survival. J Cell Biol 1998; 141: 1083–93.

    PubMed  CAS  Google Scholar 

  102. Allman R, Cowburn P, Mason M. In vitro and in vivo effects of a cyclic peptide with affinity for the alpha(nu)beta3 integrin in human melanoma cells. Eur J Cancer 2000; 36: 410–22.

    PubMed  CAS  Google Scholar 

  103. Fidler IJ. Angiogenesis and cancer metastasis. Cancer J Sci Am 2000; 6 (Suppl 2): S134–41.

    Google Scholar 

  104. Ezekowitz RAB, Mulliken JB, Folkman J. Interferon alfa-2a therapy for life-threatening hemangiomas of infancy. N Engl J Med 1992; 326: 1456–63.

    Article  PubMed  CAS  Google Scholar 

  105. Bielenberg DR, McCarty MF, Bucana CD, et al. Expression of interferon-beta is associated with growth arrest of murine and human epidermal cells. J Invest Dermatol 1999; 112: 802–9.

    PubMed  CAS  Google Scholar 

  106. Kerbel RS, Viloria-Petit A, Klement G, Rak J. ‘Accidental’ anti-angiogenic drugs. Anti-oncogene directed signal transduction inhibitors and conventional chemotherapeutic agents as examples. Eur J Cancer 2000; 36: 1248–57.

    PubMed  CAS  Google Scholar 

  107. Ohlms LA, Jones DT, McGill TJI, et al. Interferon-alpha-2a therapy for airway hemangiomas. Ann Otol Rhinol Laryngol 1994; 103: 1–8.

    PubMed  CAS  Google Scholar 

  108. Slaton JW, Perrotte P, Inoue K, Dinney CP, Fidler IJ. Interferon-alpha-mediated down-regulation of angiogenesis-related genes and therapy of bladder cancer are dependent on optimization of biological dose and schedule. Clin Cancer Res 1999; 5: 2726–34.

    PubMed  CAS  Google Scholar 

  109. Ozawa S, Shinohara H, Kanayama H, et al. Suppression of angiogenesis and therapy of human colon cancer liver metastasis by systemic administration of interferon-alpha. Neoplasia 2001; 3: 154–64.

    PubMed  CAS  Google Scholar 

  110. Takatsuka S, Yamada N, Sawada T, et al. Contribution of angiogenesis to the progression of colon cancer: possible inhibitory effect of angiogenesis inhibitor TNP-470 on tumor growth and hepatic metastasis. Int J Oncol 2000; 17: 253–8.

    PubMed  CAS  Google Scholar 

  111. Sano J, Sugiyama Y, Kunieda K, Sano B, Saji S. Therapeutic effect of TNP-470 on spontaneous liver metastasis of colon tumors in the rabbit. Surg Today 2000; 30: 1100–6.

    PubMed  CAS  Google Scholar 

  112. Tanaka T, Konno H, Baba S, et al. Prevention of hepatic and peritoneal metastases by the angiogenesis inhibitor fr-118487 after removal of growing tumor in mice. Jpn J Cancer Res 2001; 92: 88–94.

    PubMed  CAS  Google Scholar 

  113. Eda I, Soga H, Ueoka M, Okada A, Yamashita K, Shimizu N. The suppression of postoperative liver metastasis caused by the continuous intraportal infusion of angiogenesis inhibitor FR-118487 in a rabbit colon cancer model. Surg Today 1998; 28: 273–8.

    PubMed  CAS  Google Scholar 

  114. O’Reilly MS, Holmgren L, Shing Y, et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 1994; 79: 315–28.

    PubMed  CAS  Google Scholar 

  115. O’Reilly MS, Boehm T, Shing Y, et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 1997; 88: 277–85.

    PubMed  CAS  Google Scholar 

  116. Sim BK, MacDonald NJ, Gubish ER. Angiostatin and endostatin: endogenous inhibitors of tumor growth. Cancer Metastasis Rev 2000; 19: 181–90.

    PubMed  CAS  Google Scholar 

  117. Sim BK, O’Reilly MS, Liang H, et al. A recombinant human angiostatin protein inhibits experimental primary and metastatic cancer. Cancer Res 1997; 57: 1329–34.

    PubMed  CAS  Google Scholar 

  118. Chen QR, Kumar D, Stass SA, Mixson AJ. Liposomes complexed to plasmids encoding angiostatin and endostatin inhibit breast cancer in nude mice. Cancer Res 1999; 59: 3308–12.

    PubMed  CAS  Google Scholar 

  119. Drixler TA, Rinkes IH, Ritchie ED, van Vroonhoven TJ, Gebbink MF, Voest EE. Continuous administration of angiostatin inhibits accelerated growth of colorectal liver metastases after partial hepatectomy. Cancer Res 2000; 60: 1761–5.

    PubMed  CAS  Google Scholar 

  120. Boehm T, O’Reilly MS, Keough K, Shiloach J, Shapiro R, Folkman J. Zinc-binding of endostatin is essential for its antiangiogenic activity. Biochem Biophys Res Commun 1998; 252: 190–4.

    PubMed  CAS  Google Scholar 

  121. Dhanabal M, Ramchandran R, Waterman MJ, et al. Endostatin induces endothelial cell apoptosis. J Biol Chem 1999; 274: 11721–6.

    PubMed  CAS  Google Scholar 

  122. Yokoyama Y, Dhanabal M, Griffioen AW, Sukhatme VP, Ramakrishnan S. Synergy between angiostatin and endostatin: inhibition of ovarian cancer growth. Cancer Res 2000; 60: 2190–6.

    PubMed  CAS  Google Scholar 

  123. Yoon SS, Eto H, Lin CM, et al. Mouse endostatin inhibits the formation of lung and liver metastases. Cancer Res 1999; 59: 6251–6.

    PubMed  CAS  Google Scholar 

  124. Murakami K, Sakukawa R, Sano M, et al. Inhibition of angiogenesis and intrahepatic growth of colon cancer by TAC-101. Clin Cancer Res 1999; 5: 2304–10.

    PubMed  CAS  Google Scholar 

  125. Lode HN, Moehler T, Xiang R, et al. Synergy between an antiangiogenic integrin alphav antagonist and an antibody-cytokine fusion protein eradicates spontaneous tumor metastases. Proc Natl Acad Sci U S A 1999; 96: 1591–6.

    PubMed  CAS  Google Scholar 

  126. Miller LL, Elfring GL, Hannah AL, Allred R, Scigalla P, Rosen LS. Efficacy results of a phase I/II study of SU5416 (S)/5-fluorouracil (F)/leucovorin (L) relative to results in random subsets of similar patients from a phase III study of Irinotecan (C)/F/L or F/L alone in the therapy of previously untreated metastatic colorectal cancer. Proc Am Soc Clin Oncol 2001; 20: 144a.

    Google Scholar 

  127. Bergsland EK, Fehrenbacher L, Novotny W, Holmgren E, Lieberman G, Kabbinavar F. Bevacizumab (BV) + chemotherapy (CT) may improve survival in metastatic colorectal cancer subjects with unfavorable prognostic indicators (abstract 2247). Proc Am Soc Clin Oncol 2001; 20: 124b.

    Google Scholar 

  128. Fidler IJ, Kerbel RS, Ellis LM. Biology of cancer: angiogenesis. In: DeVita VT, Hellman S, Rosenberg SA, eds. Cancer: Principles and Practice of Oncology. 6th ed. Philadelphia: Lippincott Williams & Wilkins, 2001: 137–147.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee M. Ellis MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoeltzing, O., Liu, W., Reinmuth, N. et al. New Approaches to the Treatment of Hepatic Malignancies Angiogenesis and Antiangiogenic Therapy of Colon Cancer Liver Metastasis. Ann Surg Oncol 10, 722–733 (2003). https://doi.org/10.1245/ASO.2003.07.019

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1245/ASO.2003.07.019

Key words:

Navigation