Skip to main content

Advertisement

Log in

Pancreatic Fat and Body Composition Measurements by Computed Tomography are Associated with Pancreatic Fistula After Pancreatectomy

  • Pancreatic Tumors
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Objectives

Postoperative pancreatic fistula (POPF) is the most threatening complication after pancreatectomy. This study aimed to directly assess pancreatic fatty infiltration with preoperative computed tomography (CT) imaging and to investigate whether a preoperative analysis of patient variables, including CT characteristics and clinical factors, can predict POPF.

Methods

We enrolled 150 consecutive patients who underwent curative pancreatectomy. Radiographic factors, including pancreatic fat volume, were measured using preoperative CT imaging and the predictive factors were explored using univariate and multivariate analyses.

Results

POPF developed in 30 patients (20.0%). The ratio of pancreatic fat (RPF) ≥ 4.83% was associated with a risk of POPF, high body mass index (BMI), and obese body habitus. Patients with POPF were significantly more likely to have high BMI (≥ 25 kg/m2), obese body habitus, and an RPF ≥ 4.83% than patients without POPF. In the multivariate analysis, visceral fat area/skeletal muscle index (VFA/SMI) ≥ 1.94 (odds ratio [OR] 4.28, 95% confidence interval [CI] 1.43–12.9, p = 0.0095) was the sole independent predictive factor for POPF. For patients with a soft pancreas, VFA/SMI ≥ 1.94 (OR 5.67, 95% CI 2.05–15.7, p = 0.0008) was again the sole independent predictive factor for POPF.

Conclusion

Preoperative CT images can examine pancreatic fatty infiltration, and patients who had POPF were significantly associated with a high RPF. Among several parameters, VFA/SMI was the only independent predictive factor for clinically relevant POPF. Preoperative evaluation of these body composition variables and the pancreatic configuration could be useful for predicting POPF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Gooiker GA, Lemmens VE, Besselink MG, et al. Impact of centralization of pancreatic cancer surgery on resection rates and survival. Br J Surg. 2014;101(8):1000–5.

    CAS  PubMed  Google Scholar 

  2. Yamada S, Nakao A, Fujii T, et al. Pancreatic cancer with paraaortic lymph node metastasis: a contraindication for radical surgery? Pancreas. 2009;38(1):e13–7.

    PubMed  Google Scholar 

  3. Kimura W, Miyata H, Gotoh M, et al. A pancreaticoduodenectomy risk model derived from 8575 cases from a national single-race population (Japanese) using a web-based data entry system: the 30-day and in-hospital mortality rates for pancreaticoduodenectomy. Ann Surg. 2014;259(4):773–80.

    PubMed  Google Scholar 

  4. Sui K, Okabayshi T, Iwata J, et al. Correlation between the skeletal muscle index and surgical outcomes of pancreaticoduodenectomy. Surg Today. 2018;48(5):545–51.

    PubMed  Google Scholar 

  5. DeOliveira ML, Winter JM, Schafer M, et al. Assessment of complications after pancreatic surgery: A novel grading system applied to 633 patients undergoing pancreaticoduodenectomy. Ann Surg. 2006;244(6):931–7 (discussion 937–939).

    PubMed  PubMed Central  Google Scholar 

  6. Katayama H, Kurokawa Y, Nakamura K, et al. Extended Clavien-Dindo classification of surgical complications: Japan Clinical Oncology Group postoperative complications criteria. Surg Today. 2016;46(6):668–85.

    PubMed  Google Scholar 

  7. Tani M, Kawai M, Hirono S, et al. Use of omentum or falciform ligament does not decrease complications after pancreaticoduodenectomy: nationwide survey of the Japanese Society of Pancreatic Surgery. Surgery. 2012;151(2):183–91.

    PubMed  Google Scholar 

  8. Enestvedt CK, Diggs BS, Cassera MA, Hammill C, Hansen PD, Wolf RF. Complications nearly double the cost of care after pancreaticoduodenectomy. Am J Surg. 2012;204(3):332–8.

    PubMed  Google Scholar 

  9. Fujii T, Kanda M, Nagai S, et al. Excess weight adversely influences treatment length of postoperative pancreatic fistula: a retrospective study of 900 patients. Pancreas. 2015;44(6):971–6.

    PubMed  Google Scholar 

  10. Braga M, Capretti G, Pecorelli N, et al. A prognostic score to predict major complications after pancreaticoduodenectomy. Ann Surg. 2011;254(5):702–7 (discussion 707–708).

    PubMed  Google Scholar 

  11. Gaujoux S, Cortes A, Couvelard A, et al. Fatty pancreas and increased body mass index are risk factors of pancreatic fistula after pancreaticoduodenectomy. Surgery. 2010;148(1):15–23.

    PubMed  Google Scholar 

  12. Sandini M, Bernasconi DP, Ippolito D, et al. Preoperative computed tomography to predict and stratify the risk of severe pancreatic fistula after pancreatoduodenectomy. Medicine (Baltimore). 2015;94(31):e1152.

    Google Scholar 

  13. House MG, Fong Y, Arnaoutakis DJ, et al. Preoperative predictors for complications after pancreaticoduodenectomy: impact of BMI and body fat distribution. J Gastrointest Surg. 2008;12(2):270–8.

    PubMed  Google Scholar 

  14. Roberts KJ, Karkhanis S, Pitchaimuthu M, et al. Comparison of preoperative CT-based imaging parameters to predict postoperative pancreatic fistula. Clin Radiol. 2016;71(10):986–92.

    CAS  PubMed  Google Scholar 

  15. Pecorelli N, Carrara G, De Cobelli F, et al. Effect of sarcopenia and visceral obesity on mortality and pancreatic fistula following pancreatic cancer surgery. Br J Surg. 2016;103(4):434–42.

    CAS  PubMed  Google Scholar 

  16. Tranchart H, Gaujoux S, Rebours V, et al. Preoperative CT scan helps to predict the occurrence of severe pancreatic fistula after pancreaticoduodenectomy. Ann Surg. 2012;256(1):139–45.

    PubMed  Google Scholar 

  17. Kirihara Y, Takahashi N, Hashimoto Y, et al. Prediction of pancreatic anastomotic failure after pancreatoduodenectomy: the use of preoperative, quantitative computed tomography to measure remnant pancreatic volume and body composition. Ann Surg. 2013;257(3):512–9.

    PubMed  Google Scholar 

  18. Sugimoto M, Takahashi S, Kojima M, Kobayashi T, Gotohda N, Konishi M. In patients with a soft pancreas, a thick parenchyma, a small duct, and fatty infiltration are significant risks for pancreatic fistula after pancreaticoduodenectomy. J Gastrointest Surg. 2017;21(5):846–54.

    PubMed  Google Scholar 

  19. Mathur A, Pitt HA, Marine M, et al. Fatty pancreas: a factor in postoperative pancreatic fistula. Ann Surg. 2007;246(6):1058–64.

    PubMed  Google Scholar 

  20. Lee SE, Jang JY, Lim CS, et al. Measurement of pancreatic fat by magnetic resonance imaging: predicting the occurrence of pancreatic fistula after pancreatoduodenectomy. Ann Surg. 2010;251(5):932–6.

    PubMed  Google Scholar 

  21. Wong VW, Wong GL, Yeung DK, et al. Fatty pancreas, insulin resistance, and beta-cell function: a population study using fat-water magnetic resonance imaging. Am J Gastroenterol. 2014;109(4):589–97.

    CAS  PubMed  Google Scholar 

  22. Lingvay I, Esser V, Legendre JL, et al. Noninvasive quantification of pancreatic fat in humans. J Clin Endocrinol Metab. 2009;94(10):4070–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Al-Haddad M, Khashab M, Zyromski N, et al. Risk factors for hyperechogenic pancreas on endoscopic ultrasound: a case-control study. Pancreas. 2009;38(6):672–5.

    PubMed  Google Scholar 

  24. Fujii T, Sugimoto H, Yamada S, et al. Modified Blumgart anastomosis for pancreaticojejunostomy: technical improvement in matched historical control study. J Gastrointest Surg. 2014;18(6):1108–15.

    PubMed  Google Scholar 

  25. Yamada S, Fujii T, Kawai M, et al. Splenic vein resection together with the pancreatic parenchyma versus separated resection after isolation of the parenchyma during distal pancreatectomy (COSMOS-DP trial): study protocol for a randomised controlled trial. Trials. 2018;19(1):369.

    PubMed  PubMed Central  Google Scholar 

  26. Fujii T, Yamada S, Murotani K, et al. Modified blumgart suturing technique for remnant closure after distal pancreatectomy: a propensity score-matched analysis. J Gastrointest Surg. 2016;20(2):374–84.

    PubMed  Google Scholar 

  27. Bassi C, Marchegiani G, Dervenis C, et al. The 2016 update of the International Study Group (ISGPS) definition and grading of postoperative pancreatic fistula: 11 Years After. Surgery. 2017;161(3):584–91.

    PubMed  Google Scholar 

  28. Callery MP, Pratt WB, Vollmer CM, Jr. Prevention and management of pancreatic fistula. J Gastrointest Surg. 2009;13(1):163–73.

    PubMed  Google Scholar 

  29. Vanbrugghe C, Ronot M, Cauchy F, et al. Visceral obesity and open passive drainage increase the risk of pancreatic fistula following distal pancreatectomy. J Gastrointest Surg. 2019;23(7):1414–24.

    PubMed  Google Scholar 

  30. Molinari E, Bassi C, Salvia R, et al. Amylase value in drains after pancreatic resection as predictive factor of postoperative pancreatic fistula: results of a prospective study in 137 patients. Ann Surg. 2007;246(2):281–7.

    PubMed  PubMed Central  Google Scholar 

  31. Partelli S, Tamburrino D, Crippa S, Facci E, Zardini C, Falconi M. Evaluation of a predictive model for pancreatic fistula based on amylase value in drains after pancreatic resection. Am J Surg. 2014;208(4):634–9.

    PubMed  Google Scholar 

  32. Yamane H, Abe T, Amano H, et al. Visceral adipose tissue and skeletal muscle index distribution predicts severe pancreatic fistula development after pancreaticoduodenectomy. Anticancer Res. 2018;38(2):1061–6.

    PubMed  Google Scholar 

  33. Rosso E, Casnedi S, Pessaux P, et al. The role of “fatty pancreas” and of BMI in the occurrence of pancreatic fistula after pancreaticoduodenectomy. J Gastrointest Surg. 2009;13(10):1845–51.

    PubMed  Google Scholar 

  34. Riall TS, Reddy DM, Nealon WH, Goodwin JS. The effect of age on short-term outcomes after pancreatic resection: a population-based study. Ann Surg. 2008;248(3):459–67.

    PubMed  PubMed Central  Google Scholar 

  35. Menahem B, Mulliri A, Bazille C, et al. Body Surface Area: A new predictive factor of mortality and pancreatic fistula after pancreaticoduodenectomy: a cohort-study. Int J Surg. 2015;17:83–7.

    PubMed  Google Scholar 

  36. Despres JP, Lemieux I. Abdominal obesity and metabolic syndrome. Nature. 2006;444(7121):881–7.

    CAS  PubMed  Google Scholar 

  37. Tilg H, Moschen AR. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol. 2006;6(10):772–83.

    CAS  PubMed  Google Scholar 

  38. Rega G, Kaun C, Demyanets S, et al. Vascular endothelial growth factor is induced by the inflammatory cytokines interleukin-6 and oncostatin m in human adipose tissue in vitro and in murine adipose tissue in vivo. Arterioscler Thromb Vasc Biol. 2007;27(7):1587–95.

    CAS  PubMed  Google Scholar 

  39. Haslam DW, James WP. Obesity. Lancet. 2005;366(9492):1197–209.

    PubMed  Google Scholar 

  40. Argiles JM, Busquets S, Stemmler B, Lopez-Soriano FJ. Cachexia and sarcopenia: mechanisms and potential targets for intervention. Curr Opin Pharmacol. 2015;22:100–6.

    CAS  PubMed  Google Scholar 

  41. Lutz CT, Quinn LS. Sarcopenia, obesity, and natural killer cell immune senescence in aging: altered cytokine levels as a common mechanism. Aging (Albany NY). 2012;4(8):535–46.

    CAS  Google Scholar 

  42. Gilliland TM, Villafane-Ferriol N, Shah KP, et al. Nutritional and metabolic derangements in pancreatic cancer and pancreatic resection. Nutrients. 2017;9(3):pii:E243.

  43. Marcus RL, Addison O, Kidde JP, Dibble LE, Lastayo PC. Skeletal muscle fat infiltration: impact of age, inactivity, and exercise. J Nutr Health Aging. 2010;14(5):362–6.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suguru Yamada MD, PhD, FACS.

Ethics declarations

Disclosures

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 kb)

Supplementary material 2 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, K., Yamada, S., Sonohara, F. et al. Pancreatic Fat and Body Composition Measurements by Computed Tomography are Associated with Pancreatic Fistula After Pancreatectomy. Ann Surg Oncol 28, 530–538 (2021). https://doi.org/10.1245/s10434-020-08581-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-020-08581-9

Navigation