Annals of Surgical Oncology

, Volume 26, Issue 12, pp 4070–4080 | Cite as

Margin Analysis in Head and Neck Cancer: State of the Art and Future Directions

  • Michael M. Li
  • Sidharth V. Puram
  • Dustin A. Silverman
  • Matthew O. Old
  • James W. Rocco
  • Stephen Y. KangEmail author
Head and Neck Oncology



The status of surgical margins is the most important prognosticator for patients undergoing surgical resection of head and neck squamous cell carcinoma (HNSCC). Despite this, analysis of surgical margins is fraught with inconsistencies, including the ways in which margins are sampled and interpreted. Fundamentally, even the definition what constitutes a “clear” (or negative) margin may vary between institutions, surgeons, and pathologists.


The PubMed database was queried for articles relevant to the topic, and experts in the field were consulted regarding key articles for inclusion. Abstracts were reviewed and the full text was accessed for articles of particular interest.


Data regarding various approaches to traditional margin analysis have been published without consensus. Several next-generation technologies have emerged in recent years that hold promise.


An overview and appraisal of traditional margin analysis techniques are provided. Additionally, we explore novel technologies that may assist in more accurate margin assessment, guide the extent of surgical resections intraoperatively, and inform decisions regarding adjuvant treatment postoperatively.



The authors have nothing to disclose.


  1. 1.
    Jesse RH, Sugarbaker EV. Squamous cell carcinoma of the oropharynx: why we fail. Am J Surg. 1976;132(4):435–8.CrossRefGoogle Scholar
  2. 2.
    Loree TR, Strong EW. Significance of positive margins in oral cavity squamous carcinoma. Am J Surg. 1990;160(4):410–4.CrossRefGoogle Scholar
  3. 3.
    Meier JD, Oliver DA, Varvares MA. Surgical margin determination in head and neck oncology: Current clinical practice. The results of an International American Head and Neck Society Member Survey. 2005;27(11):952–8.Google Scholar
  4. 4.
    McMahon J, O’Brien CJ, Pathak I, et al. Influence of condition of surgical margins on local recurrence and disease-specific survival in oral and oropharyngeal cancer. Br J Oral Maxillofac Surg. 2003;41(4):224–31.CrossRefGoogle Scholar
  5. 5.
    Eldeeb H, Macmillan C, Elwell C, Hammod A. The effect of the surgical margins on the outcome of patients with head and neck squamous cell carcinoma: single institution experience. Cancer Biol Med. 2012;9(1):29–33.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Binahmed A, Nason RW, Abdoh AA. The clinical significance of the positive surgical margin in oral cancer. Oral Oncol. 2007;43(8):780–4.CrossRefGoogle Scholar
  7. 7.
    Slaughter DP. Surgical management of intraoral cancer. Am J Roentgenol Rad Ther Nucl Med. 1955;73(4):605-10; discussion, 635–8.Google Scholar
  8. 8.
    Slaughter DP, Southwick HW, Smejkal W. Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer. 1953;6(5):963–8.CrossRefGoogle Scholar
  9. 9.
    Looser KG, Shah JP, Strong EW. The significance of “positive” margins in surgically resected epidermoid carcinomas. 1978;1(2):107–11.Google Scholar
  10. 10.
    Lane JE, Kent DE. Surgical margins in the treatment of nonmelanoma skin cancer and mohs micrographic surgery. Curr Surg. 2005;62(5):518–26.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Minton TJ. Contemporary Mohs surgery applications. Curr Opin Otolaryngol Head Neck Surg. 2008;16(4):376–80.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Cohen DK, Goldberg DJ. Mohs micrographic surgery: past, present, and future. Dermatologic Surg. 2019;45(3):329–39.CrossRefGoogle Scholar
  13. 13.
    Weinstein MC, Brodell RT, Bordeaux J, Honda K. The art and science of surgical margins for the dermatopathologist. Am J Dermatopathol. 2012;34(7):737–45.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Amit M, Na’ara S, Leider-Trejo L, et al. Improving the rate of negative margins after surgery for oral cavity squamous cell carcinoma: a prospective randomized controlled study. Head Neck. 2016;38 Suppl 1:E1803–9.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Varvares MA, Walker RJ, Chiosea S. Does a specimen-based margin analysis of early tongue cancer better predict local control? Laryngoscope. 2016;126(11):2426–7.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hinni ML, Ferlito A, Brandwein-Gensler MS, et al. Surgical margins in head and neck cancer: a contemporary review. Head Neck. 2013;35(9):1362–70.CrossRefGoogle Scholar
  17. 17.
    Kerawala CJ, Ong TK. Relocating the site of frozen sections: is there room for improvement? Head Neck. 2001;23(3):230–2.CrossRefGoogle Scholar
  18. 18.
    Berdugo J, Thompson LDR, Purgina B, et al. Measuring depth of invasion in early squamous cell carcinoma of the oral tongue: positive deep margin, extratumoral perineural invasion, and other challenges. Head Neck Pathol. Apr 26 2018.Google Scholar
  19. 19.
    Woolgar JA, Triantafyllou A. A histopathological appraisal of surgical margins in oral and oropharyngeal cancer resection specimens. Oral Oncol. 2005;41(10):1034–3.CrossRefGoogle Scholar
  20. 20.
    Choi N, Cho JK, Lee EK, Won SJ, Kim BY, Baek CH. Transoral bisected resection for T1-2 oral tongue squamous cell carcinoma to secure adequate deep margin. Oral Oncol. 2017;73:70–6.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Tirelli G, Boscolo Nata F, Gatto A, et al. Intraoperative margin control in transoral approach for oral and oropharyngeal cancer.Google Scholar
  22. 22.
    Mayer A, Royer MC, Summerlin DJ, et al. Rapid mandible margins for intraoperative assessment. Am J Otolaryngol. 2015;36(3):324–9.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Garcia-Donas JG, Dalton A, Chaplin I, Kranioti EF. A revised method for the preparation of dry bone samples used in histological examination: five simple steps. Homo Int Zeitschrift vergleichende Forschung Menschen. 2017;68(4):283–8.Google Scholar
  24. 24.
    Bilodeau EA, Chiosea S. Oral squamous cell carcinoma with mandibular bone invasion: intraoperative evaluation of bone margins by routine frozen section. Head Neck Pathol. 2011;5(3):216–20.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Forrest LA, Schuller DE, Karanfilov B, Lucas JG. Update on intraoperative analysis of mandibular margins. Am J Otolaryngol. 1997;18(6):396–9.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Weisberger EC, Hilburn M, Johnson B, Nguyen C. Intraoperative microwave processing of bone margins during resection of head and neck cancer. Arch Otolaryngol Head Neck Surg. 2001;127(7):790–3.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Nieberler M, Hausler P, Drecoll E, et al. Evaluation of intraoperative cytological assessment of bone resection margins in patients with oral squamous cell carcinoma. Cancer Cytopathol. 2014;122(9):646–56.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Singh A, Mair M, Singhvi H, et al. Incidence, predictors and impact of positive bony margins in surgically treated T4 stage cancers of the oral cavity. Oral Oncol. 2019;90:8–12.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ord RA, Aisner S. Accuracy of frozen sections in assessing margins in oral cancer resection. J Oral Maxillofacial Surg. 1997;55(7):663–9.CrossRefGoogle Scholar
  30. 30.
    Du E, Ow TJ, Lo YT, et al. Refining the utility and role of Frozen section in head and neck squamous cell carcinoma resection. Laryngoscope. 2016;126(8):1768–1775.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    DiNardo LJ, Lin J, Karageorge LS, Powers CN. Accuracy, utility, and cost of frozen section margins in head and neck cancer surgery. Laryngoscope. 2000;110(10 Pt 1):1773–1776.CrossRefGoogle Scholar
  32. 32.
    Nocon CC, Ajmani GS, Bhayani MK. Association of facility volume with positive margin rate in the surgical treatment of head and neck cancerassociation of facility volume with positive margin rate in head and neck cancer surgical treatment. Association of facility volume with positive margin rate in head and neck cancer surgical treatment. JAMA Otolaryngol Head Neck Surg. 2018;144(12):1090–7.Google Scholar
  33. 33.
    Ettl T, El-Gindi A, Hautmann M, et al. Positive frozen section margins predict local recurrence in R0-resected squamous cell carcinoma of the head and neck. Oral Oncol. 2016;55:17–23.CrossRefGoogle Scholar
  34. 34.
    Patel RS, Goldstein DP, Guillemaud J, et al. Impact of positive frozen section microscopic tumor cut-through revised to negative on oral carcinoma control and survival rates. Head Neck. 2010;32(11):1444–51.CrossRefGoogle Scholar
  35. 35.
    Bertino G, Degiorgi G, Tinelli C, Cacciola S, Occhini A, Benazzo M. CO2 laser cordectomy for T1–T2 glottic cancer: oncological and functional long-term results. Eur Arch Oto-Rhino-Laryngol. 2015;272(9):2389–95.CrossRefGoogle Scholar
  36. 36.
    Hendriksma M, Montagne MW, Langeveld TPM, Veselic M, van Benthem PPG, Sjögren EV. Evaluation of surgical margin status in patients with early glottic cancer (Tis-T2) treated with transoral CO(2) laser microsurgery, on local control. Eur Arch Oto-rhino-laryngol. 2018;275(9):2333–40.CrossRefGoogle Scholar
  37. 37.
    Wong LS, McMahon J, Devine J, et al. Influence of close resection margins on local recurrence and disease-specific survival in oral and oropharyngeal carcinoma. Br J Oral Maxillofacial Surg. 2012;50(2):102–8.CrossRefGoogle Scholar
  38. 38.
    Dillon JK, Brown CB, McDonald TM, et al. How does the close surgical margin impact recurrence and survival when treating oral squamous cell carcinoma? J Oral Maxillofacial Surg. 2015;73(6):1182–8.CrossRefGoogle Scholar
  39. 39.
    Barry CP, Ahmed F, Rogers SN, et al. Influence of surgical margins on local recurrence in T1/T2 oral squamous cell carcinoma. 2015;37(8):1176–80.Google Scholar
  40. 40.
    Ch’ng S, Corbett-Burns S, Stanton N, et al. Close margin alone does not warrant postoperative adjuvant radiotherapy in oral squamous cell carcinoma. 2013;119(13):2427–37.PubMedGoogle Scholar
  41. 41.
    Zanoni DK, Migliacci JC, Xu B, et al. A proposal to redefine close surgical margins in squamous cell carcinoma of the oral tongue. JAMA Otolaryngol Head Neck Surg. 2017;143(6):555–60.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Tasche KK, Buchakjian MR, Pagedar NA, Sperry SM. Definition of “close margin” in oral cancer surgery and association of margin distance with local recurrence rate. JAMA Otolaryngol Head Neck Surg. 2017;143(12):1166–72.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Hadjipanayis CG, Widhalm G, Stummer W. What is the surgical benefit of utilizing 5-aminolevulinic acid for fluorescence-guided surgery of malignant gliomas? Neurosurgery. 2015;77(5):663–73.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Motekallemi A, Jeltema H-R, Metzemaekers JDM, van Dam GM, Crane LMA, Groen RJM. The current status of 5-ALA fluorescence-guided resection of intracranial meningiomas-a critical review. Neurosurg Rev. 2015;38(4):619–28.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Leunig A, Mehlmann M, Betz C, et al. Fluorescence staining of oral cancer using a topical application of 5-aminolevulinic acid: fluorescence microscopic studies. J Photochem Photobiol B. 2001;60(1):44–9.CrossRefGoogle Scholar
  46. 46.
    Miles BA, Patsias A, Quang T, Polydorides AD, Richards-Kortum R, Sikora AG. Operative margin control with high-resolution optical microendoscopy for head and neck squamous cell carcinoma. Laryngoscope. 2015;125(10):2308–16.CrossRefGoogle Scholar
  47. 47.
    de Boer E, Warram JM, Tucker MD, et al. In Vivo Fluorescence Immunohistochemistry: Localization of Fluorescently Labeled Cetuximab in Squamous Cell Carcinomas. Sci Rep. 2015;5:10169.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Iqbal H, Pan Q. Image guided surgery in the management of head and neck cancer. Oral Oncol. 2016;57:32–9.CrossRefGoogle Scholar
  49. 49.
    Keereweer S, Kerrebijn JD, Mol IM, et al. Optical imaging of oral squamous cell carcinoma and cervical lymph node metastasis. Head Neck. 2012;34(7):1002–8.CrossRefGoogle Scholar
  50. 50.
    van Driel PB, van de Giessen M, Boonstra MC, et al. Characterization and evaluation of the artemis camera for fluorescence-guided cancer surgery. Mol Imaging Biol. 2015;17(3):413–23.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Atallah I, Milet C, Coll JL, Reyt E, Righini CA, Hurbin A. Role of near-infrared fluorescence imaging in head and neck cancer surgery: from animal models to humans. Eur Arch Otorhinolaryngol. 2015;272(10):2593–600.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Gao RW, Teraphongphom NT, van den Berg NS, et al. Determination of Tumor Margins with Surgical Specimen Mapping Using Near-Infrared Fluorescence. Cancer Res. 2018;78(17):5144–54.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    van Keulen S, van den Berg NS, Nishio N, et al. Rapid, non-invasive fluorescence margin assessment: Optical specimen mapping in oral squamous cell carcinoma. Oral Oncol. 2019;88:58–65.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Ramanujam N. Fluorescence spectroscopy of neoplastic and non-neoplastic tissues. Neoplasia. 2000;2(1-2):89–117.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Auner GW, Koya SK, Huang C, et al. Applications of Raman spectroscopy in cancer diagnosis. Cancer Metastasis Rev. Dec 19 2018.Google Scholar
  56. 56.
    Francisco AL, Correr WR, Pinto CA, et al. Analysis of surgical margins in oral cancer using in situ fluorescence spectroscopy. Oral Oncol. 2014;50(6):593–9.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Jermyn M, Mercier J, Aubertin K, et al. Highly accurate detection of cancer with intraoperative, label-free, multimodal optical spectroscopy. Cancer Res. 2017;77(14):3942.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    St John ER, Balog J, McKenzie JS, et al. Rapid evaporative ionisation mass spectrometry of electrosurgical vapours for the identification of breast pathology: towards an intelligent knife for breast cancer surgery. Breast Cancer Res. 2017;19(1):59.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Brennan JA, Mao L, Hruban RH, et al. Molecular assessment of histopathological staging in squamous-cell carcinoma of the head and neck. N Engl J Med. 1995;332(7):429–35.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Pierssens D, Borgemeester MC, van der Heijden SJH, et al. Chromosome instability in tumor resection margins of primary OSCC is a predictor of local recurrence. Oral Oncol. 2017;66:14–21.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    van Houten VM, Leemans CR, Kummer JA, et al. Molecular diagnosis of surgical margins and local recurrence in head and neck cancer patients: a prospective study. Clin Cancer Res. 2004;10(11):3614–20.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Poeta ML, Manola J, Goldwasser MA, et al. TP53 mutations and survival in squamous-cell carcinoma of the head and neck. N Engl J Med. 2007;357(25):2552–61.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Yang XH, Ding L, Fu Y, et al. p53-positive expression in dysplastic surgical margins is a predictor of tumor recurrence in patients with early oral squamous cell carcinoma. Cancer Manage Res. 2019;11:1465–72.CrossRefGoogle Scholar
  64. 64.
    Cruz IB, Snijders PJ, Meijer CJ, et al. p53 expression above the basal cell layer in oral mucosa is an early event of malignant transformation and has predictive value for developing oral squamous cell carcinoma. J Pathol. 1998;184(4):360–8.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Singh J, Jayaraj R, Baxi S, et al. Immunohistochemical expression levels of p53 and eIF4E markers in histologically negative surgical margins, and their association with the clinical outcome of patients with head and neck squamous cell carcinoma. Molec Clin Oncol. 2016;4(2):166–72.CrossRefGoogle Scholar
  66. 66.
    Nathan CO, Franklin S, Abreo FW, Nassar R, De Benedetti A, Glass J. Analysis of surgical margins with the molecular marker eIF4E: a prognostic factor in patients with head and neck cancer. J Clin Oncol. 1999;17(9):2909–14.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Hayashi M, Wu G, Roh JL, et al. Correlation of gene methylation in surgical margin imprints with locoregional recurrence in head and neck squamous cell carcinoma. Cancer. 2015;121(12):1957–65.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Mao L, Clark D. Molecular margin of surgical resections–where do we go from here? Cancer. 2015;121(12):1914–6.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Liu SA, Wang CC, Jiang RS, Wang WY, Lin JC. Genetic analysis of surgical margins in oral cavity cancer. Br J Surg. 2018;105(2):e142–9.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Lin JC, Wang CC, Jiang RS, Wang WY, Liu SA. Impact of microsatellite alteration in surgical margins on local recurrence in oral cavity cancer patients. Eur Arch Otorhinolaryngol. 2017;274(1):431–9.CrossRefGoogle Scholar
  71. 71.
    Szukala K, Brieger J, Bruch K, et al. Loss of heterozygosity on chromosome arm 13q in larynx cancer patients: analysis of tumor, margin and clinically unchanged mucosa. Med Sci Monit. 2004;10(6):Cr233–40.Google Scholar
  72. 72.
    Matsuzaki K, Deng G, Tanaka H, Kakar S, Miura S, Kim YS. The relationship between global methylation level, loss of heterozygosity, and microsatellite instability in sporadic colorectal cancer. 2005;11(24):8564–9.Google Scholar
  73. 73.
    Roh JL, Westra WH, Califano JA, Sidransky D, Koch WM. Tissue imprint for molecular mapping of deep surgical margins in patients with head and neck squamous cell carcinoma. Head Neck. 2012;34(11):1529–36.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Laytragoon-Lewin N, Rutqvist LE, Lewin F. DNA methylation in tumour and normal mucosal tissue of head and neck squamous cell carcinoma (HNSCC) patients: new diagnostic approaches and treatment. Med Oncol. 2013;30(3):654.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Thomas GR, Nadiminti H, Regalado J. Molecular predictors of clinical outcome in patients with head and neck squamous cell carcinoma. Int J Exp Pathol. 2005;86(6):347–63.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Mroz EA, Tward AD, Hammon RJ, Ren Y, Rocco JW. Intra-tumor genetic heterogeneity and mortality in head and neck cancer: analysis of data from the Cancer Genome Atlas. PLoS Med. 2015;12(2):e1001786.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Puram SV, Tirosh I, Parikh AS, et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell. 2017;171(7):1611–24.e1624.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Society of Surgical Oncology 2019

Authors and Affiliations

  • Michael M. Li
    • 1
  • Sidharth V. Puram
    • 1
  • Dustin A. Silverman
    • 1
  • Matthew O. Old
    • 1
  • James W. Rocco
    • 1
  • Stephen Y. Kang
    • 1
    Email author
  1. 1.Division of Head and Neck Oncology, Department of Otolaryngology - Head and Neck Surgery, The James Cancer Hospital and Solove Research InstituteThe Ohio State UniversityColumbusUSA

Personalised recommendations