Annals of Surgical Oncology

, Volume 26, Issue 12, pp 3892–3901 | Cite as

Post-Mastectomy Radiotherapy After Neoadjuvant Chemotherapy in Breast Cancer: A Pooled Retrospective Analysis of Three Prospective Randomized Trials

  • David KrugEmail author
  • Bianca Lederer
  • Fenja Seither
  • Valentina Nekljudova
  • Beyhan Ataseven
  • Jens-Uwe Blohmer
  • Serban Dan Costa
  • Carsten Denkert
  • Nina Ditsch
  • Bernd Gerber
  • Claus Hanusch
  • Joerg Heil
  • Jörn Hilfrich
  • Jens B. Huober
  • Christian Jackisch
  • Sherko Kümmel
  • Stefan Paepke
  • Christian Schem
  • Andreas Schneeweiss
  • Michael Untch
  • Jürgen Debus
  • Gunter von Minckwitz
  • Thorsten Kühn
  • Sibylle Loibl
Breast Oncology



The impact of locoregional radiotherapy (RT) after neoadjuvant chemotherapy (NACT) and mastectomy in breast cancer patients is currently unclear. Several publications have suggested that patients with a favorable response to NACT might not benefit from RT after mastectomy.


A retrospective analysis of three prospective randomized NACT trials was performed. Information on the use of RT was available for 817 breast cancer patients with non-inflammatory breast cancer who underwent mastectomy after NACT within the GeparTrio, GeparQuattro, and GeparQuinto-trials. RT was administered to 676 of these patients (82.7%).


The 5-year cumulative incidence of locoregional recurrence (LRR) was 15.2% (95% confidence interval [CI] 9.0–22.8%) in patients treated without RT and 11.3% in patients treated with RT (95% CI 8.7–14.3%). In the multivariate analysis, RT was associated with a lower risk of LRR (hazard ratio 0.51, 95% CI 0.27–1.0; p = 0.05). This effect was shown especially in patients with cT3/4 tumors, as well as in patients who were cN+ before neoadjuvant therapy, including those who converted to ypN0 after neoadjuvant therapy. In the bivariate analysis, disease-free survival was significantly worse in patients who received RT, however this was not confirmed in the multivariate analysis.


Our results suggest that RT reduces the LRR rates in breast cancer patients who receive a mastectomy after NACT without an improvement in DFS. Prospective randomized controlled trials such as the National Surgical Adjuvant Breast and Bowel Project B-51/RTOG 1304 trial will analyze whether RT has any benefit in patients who have a favorable response after NACT.



The authors thank all participating centers for providing radiotherapy reports. This work was previously presented in part at the 51st Annual Meeting of the American Society of Clinical Oncology, Chicago, IL, USA, 29 May–2 June 2015.


Financial support for the original trials was provided by Amgen, Chugai, GlaxoSmithKline, Roche, and Sanofi-Aventis.


David Krug, Bianca Lederer, Fenja Seither, Valentina Nekljudova, Beyhan Ataseven, Jens-Uwe Blohmer, Serban Dan Costa, Carsten Denkert, Nina Ditsch, Bernd Gerber, Claus Hanusch, Joerg Heil, Jörn Hilfrich, Jens B. Huober, Christian Jackisch, Sherko Kümmel, Stefan Paepke, Christian Schem, Andreas Schneeweiss, Michael Untch, Jürgen Debus, Gunter von Minckwitz, Thorsten Kühn, and Sibylle Loibl have no conflicts of interest relevant to this study.

Supplementary material

10434_2019_7635_MOESM1_ESM.docx (24 kb)
Supplementary material 1 (DOCX 24 kb)


  1. 1.
    Mougalian SS, Soulos PR, Killelea BK, et al. Use of neoadjuvant chemotherapy for patients with stage I to III breast cancer in the United States. Cancer. 2015;121(15):2544–52.CrossRefGoogle Scholar
  2. 2.
    Mauri D, Pavlidis N, Ioannidis JPA. Neoadjuvant versus adjuvant systemic treatment in breast cancer: a meta-analysis. J Natl Cancer Inst. 2005;97(3):188–94.CrossRefGoogle Scholar
  3. 3.
    Mieog JSD, van der Hage JA, van de Velde CJH. Neoadjuvant chemotherapy for operable breast cancer. Br J Surg. 2007;94(10):1189–200.CrossRefGoogle Scholar
  4. 4.
    Cortazar P, Zhang L, Untch M, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet. 2014;384(9938):164–72.CrossRefGoogle Scholar
  5. 5.
    von Minckwitz G, Untch M, Blohmer JU, et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J Clin Oncol. 2012;30(15):1796–804.CrossRefGoogle Scholar
  6. 6.
    Mamounas EP, Tang G, Liu Q. The importance of systemic therapy in minimizing local recurrence after breast-conserving surgery: the NSABP experience. J Surg Oncol. 2014;110(1):45–50.CrossRefGoogle Scholar
  7. 7.
    Poortmans P. Postmastectomy radiation in breast cancer with one to three involved lymph nodes: ending the debate. Lancet. 2014;383(9935):2104–6.CrossRefGoogle Scholar
  8. 8.
    Punglia RS, Morrow M, Winer EP, Harris JR. Local therapy and survival in breast cancer. N Engl J Med. 2007;356(23):2399–405.CrossRefGoogle Scholar
  9. 9.
    Buchholz TA, Tucker SL, Masullo L, et al. Predictors of local-regional recurrence after neoadjuvant chemotherapy and mastectomy without radiation. J Clin. Oncol. 2002;20(1):17–23.CrossRefGoogle Scholar
  10. 10.
    Chen AM, Meric-Bernstam F, Hunt KK, et al. Breast conservation after neoadjuvant chemotherapy: the MD Anderson cancer center experience. J Clin Oncol. 2004;22(12):2303–12.CrossRefGoogle Scholar
  11. 11.
    Marks LB, Prosnitz LR. Reducing local therapy in patients responding to preoperative systemic therapy: Are we outsmarting ourselves? J Clin Oncol. 2014;32(6):491–3.CrossRefGoogle Scholar
  12. 12.
    White J, Mamounas E. Locoregional radiotherapy in patients with breast cancer responding to neoadjuvant chemotherapy: a paradigm for treatment individualization. J Clin Oncol. 2014;32(6):494–5.CrossRefGoogle Scholar
  13. 13.
    Huober J, Fasching PA, Hanusch C, et al. Neoadjuvant chemotherapy with paclitaxel and everolimus in breast cancer patients with non-responsive tumours to epirubicin/cyclophosphamide (EC) ± bevacizumab—results of the randomised GeparQuinto study (GBG 44). Eur J Cancer. 2013;49(10):2284–293.CrossRefGoogle Scholar
  14. 14.
    Untch M, Loibl S, Bischoff J, et al. Lapatinib versus trastuzumab in combination with neoadjuvant anthracycline–taxane-based chemotherapy (GeparQuinto, GBG 44): a randomised phase 3 trial. Lancet Oncol. 2012;13(2):135–44.CrossRefGoogle Scholar
  15. 15.
    Gerber B, Loibl S, Eidtmann H, et al. Neoadjuvant bevacizumab and anthracycline–taxane-based chemotherapy in 678 triple-negative primary breast cancers; results from the geparquinto study (GBG 44). Ann Oncol. 2013;24(12):2978–84.CrossRefGoogle Scholar
  16. 16.
    Untch M, Rezai M, Loibl S, et al. Neoadjuvant treatment with trastuzumab in HER2-positive breast cancer: results from the GeparQuattro study. J Clin Oncol. 2010;28(12):2024–31.CrossRefGoogle Scholar
  17. 17.
    von Minckwitz G, Eidtmann H, Rezai M, et al. Neoadjuvant chemotherapy and bevacizumab for HER2-negative breast cancer. N Engl J Med. 2012;366(4):299–309.CrossRefGoogle Scholar
  18. 18.
    von Minckwitz G, Blohmer JU, Costa SD, et al. Response-guided neoadjuvant chemotherapy for breast cancer. J Clin Oncol. 2013;31(29):3623–30.CrossRefGoogle Scholar
  19. 19.
    von Minckwitz G, Rezai M, Fasching PA, et al. Survival after adding capecitabine and trastuzumab to neoadjuvant anthracycline-taxane-based chemotherapy for primary breast cancer (GBG 40–GeparQuattro). Ann Oncol. 2013;25(1):81–9.CrossRefGoogle Scholar
  20. 20.
    EBCTCG (Early Breast Cancer Trialists’ Collaborative Group), McGale P, Taylor C, et al. Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: meta-analysis of individual patient data for 8135 women in 22 randomised trials. Lancet. 2014;383(9935):2127–35.Google Scholar
  21. 21.
    Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Long-term outcomes for neoadjuvant versus adjuvant chemotherapy in early breast cancer: meta-analysis of individual patient data from ten randomised trials. Lancet Oncol. 2018;19(1):27–39.Google Scholar
  22. 22.
    Fowble BL, Einck JP, Kim DN, et al. Role of postmastectomy radiation after neoadjuvant chemotherapy in stage II–III breast cancer. Int J Radiat Oncol Biol Phys. 2012;83(2):494–503.CrossRefGoogle Scholar
  23. 23.
    Garg AK, Strom EA, McNeese MD, et al. T3 disease at presentation or pathologic involvement of four or more lymph nodes predict for locoregional recurrence in stage II breast cancer treated with neoadjuvant chemotherapy and mastectomy without radiotherapy. Int J Radiat Oncol Biol Phys. 2004;59(1):138–45.CrossRefGoogle Scholar
  24. 24.
    Le Scodan R, Selz J, Stevens D, et al. Radiotherapy for stage II and stage III breast cancer patients with negative lymph nodes after preoperative chemotherapy and mastectomy. Int J Radiat Oncol Biol Phys. 2012;82(1):e1–7.CrossRefGoogle Scholar
  25. 25.
    Mamounas EP, Anderson SJ, Dignam JJ, et al. Predictors of locoregional recurrence after neoadjuvant chemotherapy: results from combined analysis of national surgical adjuvant breast and bowel project B-18 and B-27. J Clin Oncol. 2012;30(32):3960–6.CrossRefGoogle Scholar
  26. 26.
    McGuire SE, Gonzalez-Angulo AM, Huang EH, et al. Postmastectomy radiation improves the outcome of patients with locally advanced breast cancer who achieve a pathologic complete response to neoadjuvant chemotherapy. Int J Radiat Oncol Biol Phys. 2007;68(4):1004–9.CrossRefGoogle Scholar
  27. 27.
    Krug D, Baumann R, Budach W, et al. Individualization of post-mastectomy radiotherapy and regional nodal irradiation based on treatment response after neoadjuvant chemotherapy for breast cancer: a systematic review. Strahlenther Onkol. 2018;21:2600–12.Google Scholar
  28. 28.
    Cureton EL, Yau C, Alvarado MD, et al. Local recurrence rates are low in high-risk neoadjuvant breast cancer in the I-SPY 1 Trial (CALGB 150007/150012; ACRIN 6657). Ann Surg Oncol. 2014;21(9):2889–96.CrossRefGoogle Scholar
  29. 29.
    Shim SJ, Park W, Huh SJ, et al. The role of postmastectomy radiation therapy after neoadjuvant chemotherapy in clinical stage II–III breast cancer patients with pN0: a multicenter, retrospective study (KROG 12-05). Int J Radiat Oncol Biol Phys. 2014;88(1):65–72.CrossRefGoogle Scholar
  30. 30.
    Huang EH, Tucker SL, Strom EA, et al. Postmastectomy radiation improves local-regional control and survival for selected patients with locally advanced breast cancer treated with neoadjuvant chemotherapy and mastectomy. J Clin Oncol. 2004;22(23):4691–9.CrossRefGoogle Scholar
  31. 31.
    Poortmans PM, Collette S, Kirkove C, et al. Internal mammary and medial supraclavicular irradiation in breast cancer. N Engl J Med. 2015; 373:317–27.CrossRefGoogle Scholar
  32. 32.
    Whelan TJ, Olivotto IA, Parulekar WR, et al. Regional nodal irradiation in early-stage breast cancer. N Engl J Med. 2015;373:307–16.CrossRefGoogle Scholar
  33. 33.
    Kim KH, Noh JM, Kim YB, et al. Does internal mammary node irradiation affect treatment outcome in clinical stage II–III breast cancer patients receiving neoadjuvant chemotherapy? Breast Cancer Res Treat. 2015;152:589–99.CrossRefGoogle Scholar
  34. 34.
    Luo J, Jin K, Chen X, et al. Internal Mammary Node Irradiation (IMNI) improves survival outcome for patients with clinical stage II–III breast cancer after preoperative systemic therapy. Int J Radiat Oncol Biol Phys. 2019;103:895–904.CrossRefGoogle Scholar
  35. 35.
    Recht A, Comen EA, Fine RE, et al. Postmastectomy radiotherapy: an American Society of Clinical Oncology, American Society for Radiation Oncology, and Society of Surgical Oncology Focused Guideline Update. J Clin Oncol. 2016;34(36):4431–42.CrossRefGoogle Scholar

Copyright information

© Society of Surgical Oncology 2019

Authors and Affiliations

  • David Krug
    • 1
    • 2
    • 21
    Email author
  • Bianca Lederer
    • 3
  • Fenja Seither
    • 3
  • Valentina Nekljudova
    • 3
  • Beyhan Ataseven
    • 4
  • Jens-Uwe Blohmer
    • 5
  • Serban Dan Costa
    • 6
  • Carsten Denkert
    • 7
  • Nina Ditsch
    • 8
  • Bernd Gerber
    • 9
  • Claus Hanusch
    • 10
  • Joerg Heil
    • 11
  • Jörn Hilfrich
    • 12
  • Jens B. Huober
    • 13
  • Christian Jackisch
    • 14
  • Sherko Kümmel
    • 15
  • Stefan Paepke
    • 16
  • Christian Schem
    • 17
  • Andreas Schneeweiss
    • 18
  • Michael Untch
    • 19
  • Jürgen Debus
    • 1
    • 2
  • Gunter von Minckwitz
    • 3
  • Thorsten Kühn
    • 20
  • Sibylle Loibl
    • 3
  1. 1.Department of Radiation OncologyUniversity Hospital HeidelbergHeidelbergGermany
  2. 2.National Center for Radiation Oncology (NCRO)Heidelberg Institute for Radiation Oncology (HIRO)HeidelbergGermany
  3. 3.German Breast GroupNeu-IsenburgGermany
  4. 4.Department of Gynecology and Gynecologic OncologyKliniken Essen-MitteEssenGermany
  5. 5.Charité, Klinik für GynäkologieBerlinGermany
  6. 6.Universitätsklinikum Magdeburg, UniversitätsfrauenklinikMagdeburgGermany
  7. 7.Institute for PathologyPhilipps-University MarburgMarburgGermany
  8. 8.Department of Obstetrics and GynecologyLudwig-Maximilians-University of MunichMunichGermany
  9. 9.Department of Gynecology and ObstetricsUniversity HospitalRostockGermany
  10. 10.Rotkreuzklinikum München, FrauenklinikMunichGermany
  11. 11.Breast Unit, University HospitalUniversity of HeidelbergHeidelbergGermany
  12. 12.Frauenklinik HenriettenstiftungHannoverGermany
  13. 13.Universitätsklinikum Ulm, UniversitätsfrauenklinikUlmGermany
  14. 14.Sana Klinikum Offenbach, Klinik für Gynäkologie und GeburtshilfeOffenbachGermany
  15. 15.Breast UnitKliniken Essen-MitteEssenGermany
  16. 16.Klinikum rechts der Isar TU München, Frauenklinik und PoliklinikMunichGermany
  17. 17.Mammazentrum HamburgHamburgGermany
  18. 18.National Center for Tumor DiseasesHeidelbergGermany
  19. 19.Helios Klinikum Berlin-Buch, Klinik für Gynäkologie und GeburtshilfeBerlinGermany
  20. 20.Department for Gynecology and ObstetricsInterdisciplinary Breast CenterEsslingenGermany
  21. 21.Department of Radiation OncologyUniversity Hospital Schleswig-HolsteinKielGermany

Personalised recommendations