Annals of Surgical Oncology

, Volume 25, Issue 9, pp 2642–2651 | Cite as

Extracellular Vesicle RNA Sequencing Reveals Dramatic Transcriptomic Alterations Between Metastatic and Primary Osteosarcoma in a Liquid Biopsy Approach

  • Qiyuan Bao
  • Liangzhi Gong
  • Jizhuang Wang
  • Junxiang Wen
  • Yuhui ShenEmail author
  • Weibin ZhangEmail author
Bone and Soft Tissue Sarcomas



Osteosarcoma (OS) is a highly metastasizing bone malignancy despite wide surgical resection of the primary lesion. A liquid biopsy approach to detect residual disease and identify therapeutic targets is still lacking. In this report, we aimed to track the metastasis of OS via extracellular vesicle (EV) RNA profiling in a non-invasive manner.


We applied RNA sequencing for 10 matched metastatic and primary OS EV samples, including two pairs of cell lines and three pairs of plasma, and compared the expressed mutation, gene expression, fusion transcript, and alternative splicing (AS) between metastatic and primary OS at the transcriptome-wide level. Additional paired tissue/EVs were sequenced and public datasets were used to validate the EV-based metastatic biopsy.


EVs were characterized through size-profiling, immunolabeling, and morphological examination. A drastic increase of mutation burden was observed in metastatic OS versus the non-metastatic counterpart. Hierarchical clustering of the expression profiles differentiated the metastatic EVs from the non-metastatic, with a signature enriched in cell-adhesion signaling and tyrosine kinase pathways. Moreover, 30 cancer-related gene fusions were identified in EV RNA as AS events tend to be more frequently observed in metastatic EVs. Further investigation suggested that over 70% of expressed point mutations from EVs could be validated in paired cell line/EV and tissue/EV analyses, and the expression signature significantly predicted 5-year survivorship of 42 patients from a public dataset.


We have demonstrated a liquid biopsy-based approach for tracking cancer transcriptomic alterations, which is a promising source of prognostic and therapeutic biomarkers for metastatic OS.

Clinical Trial Registration




The authors thank all participating clinicians and nurses engaged in gathering clinical data, blood sample collection, and sample preprocessing.


The authors are appreciative of the following grant funding support: National Science Foundation of China (NSFC, Grant No. 81773298); Shanghai Science and Technology Committee (Grant No. 17411951900); Shanghai Municipal Commission of Health and Family Planning (Grant No. 201740139), and Shanghai Municipal Education Commission-Gaofeng Clinical Medicine (Grant No. 20152204).

Conflict of interest

All authors declare that they have no conflict of interest in this study.

Supplementary material

10434_2018_6642_MOESM1_ESM.docx (50 kb)
Supplementary material 1 (DOCX 49 kb)
10434_2018_6642_MOESM2_ESM.xlsx (11 kb)
Supplementary material 2 (XLSX 10 kb)
10434_2018_6642_MOESM3_ESM.xlsx (2.5 mb)
Supplementary material 3 (XLSX 2557 kb)
10434_2018_6642_MOESM4_ESM.xlsx (18 kb)
Supplementary material 4 (XLSX 18 kb)
10434_2018_6642_MOESM5_ESM.xlsx (650 kb)
Supplementary material 5 (XLSX 650 kb)
10434_2018_6642_MOESM6_ESM.xlsx (20 kb)
Supplementary material 6 (XLSX 20 kb)
10434_2018_6642_MOESM7_ESM.xlsx (19.9 mb)
Supplementary material 7 (XLSX 20362 kb)
10434_2018_6642_MOESM8_ESM.xlsx (15 kb)
Supplementary material 8 (XLSX 14 kb)
10434_2018_6642_MOESM9_ESM.xlsx (11 kb)
Supplementary material 9 (XLSX 11 kb)
10434_2018_6642_MOESM10_ESM.xlsx (28 kb)
Supplementary material 10 (XLSX 28 kb)
10434_2018_6642_MOESM11_ESM.xlsx (89 kb)
Supplementary material 11 (XLSX 89 kb)
10434_2018_6642_MOESM12_ESM.xlsx (11 kb)
Supplementary material 12 (XLSX 11 kb)
10434_2018_6642_MOESM13_ESM.tif (29 mb)
Supplementary material 13 (TIFF 29668 kb)
10434_2018_6642_MOESM14_ESM.tif (32.3 mb)
Supplementary material 14 (TIFF 33082 kb)
10434_2018_6642_MOESM15_ESM.tif (4.3 mb)
Supplementary material 15 (TIFF 4444 kb)


  1. 1.
    Siravegna G, Marsoni S, Siena S, Bardelli A. Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol. 2017;14(9):531–48.CrossRefPubMedGoogle Scholar
  2. 2.
    Coleman R, Body JJ, Aapro M, Hadji P, Herrstedt J, Group EGW. Bone health in cancer patients: ESMO clinical practice guidelines. Ann Oncol. 2014;25(Suppl 3):iii124–37.CrossRefPubMedGoogle Scholar
  3. 3.
    Geller DS, Gorlick R. Osteosarcoma: a review of diagnosis, management, and treatment strategies. Clin Adv Hematol Oncol. 2010;8(10):705–18.PubMedGoogle Scholar
  4. 4.
    Reimann E, Koks S, Ho XD, Maasalu K, Martson A. Whole exome sequencing of a single osteosarcoma case–integrative analysis with whole transcriptome RNA-seq data. Hum Genom. 2014;8:20.Google Scholar
  5. 5.
    Kansara M, Teng MW, Smyth MJ, Thomas DM. Translational biology of osteosarcoma. Nat Rev Cancer. 2014;14(11):722–35.CrossRefPubMedGoogle Scholar
  6. 6.
    Chen X, Bahrami A, Pappo A, et al. Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. Cell Rep. 2014;7(1):104–12.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Shang D, Wu J, Guo L, Xu Y, Liu L, Lu J. Metformin increases sensitivity of osteosarcoma stem cells to cisplatin by inhibiting expression of PKM2. Int J Oncol. 2017;50(5):1848–56.CrossRefPubMedGoogle Scholar
  8. 8.
    Ajiro M, Jia R, Yang Y, Zhu J, Zheng ZM. A genome landscape of SRSF3-regulated splicing events and gene expression in human osteosarcoma U2OS cells. Nucleic Acids Res. 2016;44(4):1854–70.CrossRefPubMedGoogle Scholar
  9. 9.
    Lenos K, Grawenda AM, Lodder K, et al. Alternate splicing of the p53 inhibitor HDMX offers a superior prognostic biomarker than p53 mutation in human cancer. Cancer Res. 2012;72(16):4074–84.CrossRefPubMedGoogle Scholar
  10. 10.
    San Lucas FA, Allenson K, Bernard V, et al. Minimally invasive genomic and transcriptomic profiling of visceral cancers by next-generation sequencing of circulating exosomes. Ann Oncol. 2016;27(4):635–41.CrossRefPubMedGoogle Scholar
  11. 11.
    Bobrie A, Colombo M, Raposo G, Thery C. Exosome secretion: molecular mechanisms and roles in immune responses. Traffic. 2011;12(12):1659–68.CrossRefPubMedGoogle Scholar
  12. 12.
    Melo SA, Sugimoto H, O’Connell JT, et al. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell. 2014;26(5):707–21.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Camacho L, Guerrero P, Marchetti D. MicroRNA and protein profiling of brain metastasis competent cell-derived exosomes. PLoS ONE. 2013;8(9):e73790.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Macklin R, Wang H, Loo D, et al. Extracellular vesicles secreted by highly metastatic clonal variants of osteosarcoma preferentially localize to the lungs and induce metastatic behaviour in poorly metastatic clones. Oncotarget. 2016;7(28):43570–87.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Dong L, Lin W, Qi P, et al. Circulating long RNAs in serum extracellular vesicles: their characterization and potential application as biomarkers for diagnosis of colorectal cancer. Cancer Epidemiol Biomark Prev. 2016;25(7):1158–66.CrossRefGoogle Scholar
  16. 16.
    Syn N, Wang L, Sethi G, Thiery JP, Goh BC. Exosome-mediated metastasis: from epithelial–mesenchymal transition to escape from immunosurveillance. Trends Pharmacol Sci. 2016;37(7):606–17.CrossRefPubMedGoogle Scholar
  17. 17.
    Zhang Y, Gong M, Yuan H, Park HG, Frierson HF, Li H. Chimeric transcript generated by cis-splicing of adjacent genes regulates prostate cancer cell proliferation. Cancer Discov. 2012;2(7):598–607.CrossRefPubMedGoogle Scholar
  18. 18.
    Stransky N, Cerami E, Schalm S, Kim JL, Lengauer C. The landscape of kinase fusions in cancer. Nat Commun. 2014;5:4846.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Katz Y, Wang ET, Airoldi EM, Burge CB. Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat Methods. 2010;7(12):1009–15.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Zhang W, Ding ML, Zhang JN, et al. mTORC1 maintains the tumorigenicity of SSEA-4(+) high-grade osteosarcoma. Scientific reports. 2015;5:9604.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Clough E, Barrett T. The gene expression omnibus database. Methods Mol Biol. 2016;1418:93–110.CrossRefPubMedGoogle Scholar
  22. 22.
    Lotvall J, Hill AF, Hochberg F, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles. 2014;3:26913.CrossRefPubMedGoogle Scholar
  23. 23.
    Yates LR, Knappskog S, Wedge D, et al. Genomic Evolution of Breast Cancer Metastasis and Relapse. Cancer Cell. 2017;32(2):169–84 e167.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Wang D. Metastatic osteosarcoma exhibits higher mutational load, intratumor heterogeneity and genetic instability than primary lesion. In: 2016 Annual conference of the chinese society of clinical oncology (CSCO); Xiamen, Fujian ProvinceGoogle Scholar
  25. 25.
    Muff R, Rath P, Ram Kumar RM, et al. Genomic instability of osteosarcoma cell lines in culture: impact on the prediction of metastasis relevant genes. PLoS ONE. 2015;10(5):e0125611.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Gokgoz N, Wunder JS, Mousses S, Eskandarian S, Bell RS, Andrulis IL. Comparison of p53 mutations in patients with localized osteosarcoma and metastatic osteosarcoma. Cancer. 2001;92(8):2181–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Wunder JS, Gokgoz N, Parkes R, et al. TP53 mutations and outcome in osteosarcoma: a prospective, multicenter study. J Clin Oncol. 2005;23(7):1483–90.CrossRefPubMedGoogle Scholar
  28. 28.
    Su Y, Luo X, He B, et al. Establishment and characterization of a new highly metastatic human osteosarcoma cell line. Clin Exp Metastasis. 2009;26(7):599–610.CrossRefGoogle Scholar
  29. 29.
    Forbes SA, Beare D, Bindal N, et al. COSMIC: high-resolution cancer genetics using the catalogue of somatic mutations in cancer. Curr Protoc Hum Genet. 2016;91:10.11.1–37.CrossRefGoogle Scholar
  30. 30.
    Klijn C, Durinck S, Stawiski EW, et al. A comprehensive transcriptional portrait of human cancer cell lines. Nat Biotechnol. 2015;33(3):306–12.CrossRefPubMedGoogle Scholar
  31. 31.
    Santo EE, Ebus ME, Koster J, et al. Oncogenic activation of FOXR1 by 11q23 intrachromosomal deletion-fusions in neuroblastoma. Oncogene. 2012;31(12):1571–81.CrossRefPubMedGoogle Scholar
  32. 32.
    Yang L, Xie M, Yang M, et al. PKM2 regulates the Warburg effect and promotes HMGB1 release in sepsis. Nat Commun. 2014;5:4436.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hamabe A, Konno M, Tanuma N, et al. Role of pyruvate kinase M2 in transcriptional regulation leading to epithelial–mesenchymal transition. Proc Natl Acad Sci USA. 2014;111(43):15526–31.CrossRefPubMedGoogle Scholar
  34. 34.
    Calabretta S, Bielli P, Passacantilli I, et al. Modulation of PKM alternative splicing by PTBP1 promotes gemcitabine resistance in pancreatic cancer cells. Oncogene. 2016;35(16):2031–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Jones KB. Transposon mutagenesis disentangles osteosarcoma genetic drivers. Nat Genet. 2015;47(6):564–5.CrossRefPubMedGoogle Scholar
  36. 36.
    Tao J, Jiang MM, Jiang L, et al. Notch activation as a driver of osteogenic sarcoma. Cancer Cell. 2014;26(3):390–401.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Mohseny AB, Machado I, Cai Y, et al. Functional characterization of osteosarcoma cell lines provides representative models to study the human disease. Lab Investig. 2011;91(8):1195–205.CrossRefPubMedGoogle Scholar
  38. 38.
    Climente-Gonzalez H, Porta-Pardo E, Godzik A, Eyras E. The functional impact of alternative splicing in cancer. Cell Rep. 2017;20(9):2215–26.CrossRefPubMedGoogle Scholar
  39. 39.
    Yoshihara K, Wang Q, Torres-Garcia W, et al. The landscape and therapeutic relevance of cancer-associated transcript fusions. Oncogene. 2015;34(37):4845–4.CrossRefPubMedGoogle Scholar
  40. 40.
    Mertens F, Johansson B, Fioretos T, Mitelman F. The emerging complexity of gene fusions in cancer. Nat Rev Cancer. 2015;15(6):371–81.CrossRefPubMedGoogle Scholar
  41. 41.
    Oltean S, Bates DO. Hallmarks of alternative splicing in cancer. Oncogene. 2014;33(46):5311–8.CrossRefPubMedGoogle Scholar
  42. 42.
    Zhan C, Yan L, Wang L, et al. Isoform switch of pyruvate kinase M1 indeed occurs but not to pyruvate kinase M2 in human tumorigenesis. PLoS ONE. 2015;10(3):e0118663.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Iqbal MA, Gupta V, Gopinath P, Mazurek S, Bamezai RN. Pyruvate kinase M2 and cancer: an updated assessment. FEBS Lett. 2014;588(16):2685–92.CrossRefPubMedGoogle Scholar
  44. 44.
    Satelli A, Mitra A, Cutrera JJ, et al. Universal marker and detection tool for human sarcoma circulating tumor cells. Cancer Res. 2014;74(6):1645–50.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Kowal J, Arras G, Colombo M, et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci USA. 2016;113(8):E968-977.CrossRefPubMedGoogle Scholar

Copyright information

© Society of Surgical Oncology 2018

Authors and Affiliations

  1. 1.Department of Orthopaedics, Shanghai Ruijin HospitalShanghai Jiaotong University School of MedicineShanghaiChina

Personalised recommendations