Advertisement

Annals of Surgical Oncology

, Volume 25, Issue 7, pp 2027–2033 | Cite as

Rates of TP53 Mutation are Significantly Elevated in African American Patients with Gastric Cancer

  • Elke J. A. H. van Beek
  • Jonathan M. Hernandez
  • Debra A. Goldman
  • Jeremy L. Davis
  • Kaitlin McLaughlin
  • R. Taylor Ripley
  • Teresa S. Kim
  • Laura H. Tang
  • Jaclyn F. Hechtman
  • Jian Zheng
  • Marinela Capanu
  • Nikolaus Schultz
  • David M. Hyman
  • Marc Ladanyi
  • Michael F. Berger
  • David B. Solit
  • Yelena Y. Janjigian
  • Vivian E. StrongEmail author
Gastrointestinal Oncology

Abstract

Background

Gastric adenocarcinoma is a heterogenous disease that results from complex interactions between environmental and genetic factors, which may contribute to the disparate outcomes observed between different patient populations. This study aimed to determine whether genomic differences exist in a diverse population of patients by evaluating tumor mutational profiles stratified by race.

Methods

All patients with gastric adenocarcinoma between 2012 and 2016 who underwent targeted next-generation sequencing of cancer genes by the Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets platform were identified. Patient race was categorized as Asian, African American, Hispanic, or Caucasian. Fisher’s exact test was used to examine differences in mutation rates between racial designations for the most common mutations identified. The p values in this study were adjusted using the false discovery rate method.

Results

The study investigated 595 mutations in 119 patients. The DNA alterations identified included missense mutations (66%), frame-shift deletions (13%), and nonsense mutations (9%). Silent mutations were excluded. The most frequently mutated genes were ARID1A, CDH1, ERBB3, KRAS, PIK3CA, and TP53. Of these, TP53 was the most frequently mutated gene, affecting 50% of patients. The proportion of patients with TP53 mutations differed significantly between races (p = 0.012). The findings showed TP53 mutations for 89% (16/18) of the African American patients, 56% (10/18) of the Asian patients, 43% (9/21) of the Hispanic patients, and 40% (25/62) of the Caucasian patients.

Conclusions

Significantly higher rates of TP53 mutations were identified among the African American patients with gastric adenocarcinoma. This is the first study to evaluate tumor genomic differences in a diverse population of patients with gastric adenocarcinoma.

Notes

Disclosure

No disclosures.

References

  1. 1.
    World Health Organization. GLOBOCAN 2012: Stomach cancer estimated cancer incidence, mortality, and prevalence worldwide in 2012. http://globocan.iarc.fr. Accessed 13 July 2017.
  2. 2.
    Ohtsu A, Yoshida S, Saijo N. Disparities in gastric cancer chemotherapy between the East and West. J Clin Oncol. 2006;24:2188–96.CrossRefPubMedGoogle Scholar
  3. 3.
    Allemani C, Weir HK, Carreira H, et al. Global surveillance of cancer survival 1995–2009: analysis of individual data for 25,676,887 patients from 279 population-based registries in 67 countries (CONCORD-2). Lancet. 2015;385:977–1010.CrossRefPubMedGoogle Scholar
  4. 4.
    Strong VE, Song KY, Park CH, et al. Comparison of gastric cancer survival following R0 resection in the United States and Korea using an internationally validated nomogram. Ann Surg. 2010;251:640–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Noguchi Y, Yoshikawa T, Tsuburaya A, Motohashi H, Karpeh MS, Brennan MF. Is gastric carcinoma different between Japan and the United States? Cancer. 2000;89:2237–46.CrossRefPubMedGoogle Scholar
  6. 6.
    You WC, Li JY, Zhang L, Jin ML, Chang YS, Ma JL, Pan KF. Etiology and prevention of gastric cancer: a population study in a high-risk area of China. Chin J Dig Dis. 2005;6:149–54.CrossRefPubMedGoogle Scholar
  7. 7.
    Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513:202–9.CrossRefGoogle Scholar
  8. 8.
    Cristescu R, Lee J, Nebozhyn M, et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med. 2015;21:449–56.CrossRefPubMedGoogle Scholar
  9. 9.
  10. 10.
    Howard JH, Hiles JM, Leung AM, Stern SL, Bilchik AJ. Race influences stage-specific survival in gastric cancer. Am Surg. 2015;81:259–67.PubMedGoogle Scholar
  11. 11.
    Cheng DT, Mitchell TN, Zehir A, et al. Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology. J Mol Diagn. 2015;17:251–64.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
  13. 13.
    DeSantis CE, Siegel RL, Sauer AG, Miller KD, Fedewa SA, Alcaraz KI, Jemal A. Cancer Statistics for African Americans, 2016: progress and opportunities in reducing racial disparities. CA Cancer J Clin. 2016;66:290–308.CrossRefPubMedGoogle Scholar
  14. 14.
    Du XL, Lin CC, Johnson NJ, Altekruse S. Effects of individual-level socioeconomic factors on racial disparities in cancer treatment and survival: findings from the National Longitudinal Mortality Study, 1979–2003. Cancer. 2011;117:3242–51.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Albain KS, Unger JM, Crowley JJ, Coltman CA Jr, Hershman DL. Racial disparities in cancer survival among randomized clinical trials patients of the Southwest Oncology Group. J Natl Cancer Inst. 2009;101:984–92.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Cristescu R, Lee J, Nebozhyn M, et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med. 2015;21:449–56.CrossRefPubMedGoogle Scholar
  17. 17.
    Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science. 1991;253:49–53.CrossRefPubMedGoogle Scholar
  18. 18.
    Hainaut P, Hollstein M. p53 and human cancer: the first ten thousand mutations. Adv Cancer Res. 2000;77:81–137.CrossRefPubMedGoogle Scholar
  19. 19.
    Petitjean A, Achatz MI, Borresen-Dale AL, Hainaut P, Olivier M. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene. 2007;26:2157–65.CrossRefPubMedGoogle Scholar
  20. 20.
    Olivier M, Langerod A, Carrieri P, et al. The clinical value of somatic TP53 gene mutations in 1794 patients with breast cancer. Clin Cancer Res. 2006;12:157–1167.CrossRefGoogle Scholar
  21. 21.
    Bergh J, Norberg T, Sjogren S, Lindgren A, Holmberg L. Complete sequencing of the p53 gene provides prognostic information in breast cancer patients, particularly in relation to adjuvant systemic therapy and radiotherapy. Nat Med. 1995;1:1029–34.CrossRefPubMedGoogle Scholar
  22. 22.
    Aas T, Borresen AL, Geisler S, et al. Specific P53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nat Med. 1996;2:811–4.CrossRefPubMedGoogle Scholar
  23. 23.
    Bull SB, Ozcelik H, Pinnaduwage D, et al. The combination of p53 mutation and neu/erbB-2 amplification is associated with poor survival in node-negative breast cancer. J Clin Oncol. 2004;22:86–96.CrossRefPubMedGoogle Scholar
  24. 24.
    Kumar P, Aggarwal R. An overview of triple-negative breast cancer. Arch Gynecol Obstetr. 2016;293:247–69.CrossRefGoogle Scholar
  25. 25.
    Papa A, Caruso D, Tomao S, Rossi L, Zaccarelli E, Tomao F. Triple-negative breast cancer: investigating potential molecular therapeutic target. Expert Opin Ther Targets. 2015;19:55–75.CrossRefPubMedGoogle Scholar
  26. 26.
    Mathe A, Scott RJ, Avery-Kiejda KA. MiRNAs and other epigenetic changes as biomarkers in triple-negative breast cancer. Int J Mol Sci. 2015;16:28347–76.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Turner N, Moretti E, Siclari O, et al. Targeting triple-negative breast cancer: is p53 the answer? Cancer Treat Rev. 2013;39:541–50.CrossRefPubMedGoogle Scholar
  28. 28.
    Bertheau P, Espié M, Turpin E, et al. TP53 status and response to chemotherapy in breast cancer. Pathobiology. 2008;75:132–9.CrossRefPubMedGoogle Scholar

Copyright information

© Society of Surgical Oncology 2018

Authors and Affiliations

  • Elke J. A. H. van Beek
    • 1
  • Jonathan M. Hernandez
    • 1
    • 2
  • Debra A. Goldman
    • 3
  • Jeremy L. Davis
    • 1
    • 2
  • Kaitlin McLaughlin
    • 2
  • R. Taylor Ripley
    • 2
  • Teresa S. Kim
    • 1
  • Laura H. Tang
    • 4
  • Jaclyn F. Hechtman
    • 4
  • Jian Zheng
    • 1
  • Marinela Capanu
    • 3
  • Nikolaus Schultz
    • 3
    • 5
    • 6
  • David M. Hyman
    • 7
  • Marc Ladanyi
    • 4
    • 5
  • Michael F. Berger
    • 4
    • 5
    • 6
  • David B. Solit
    • 5
    • 6
    • 7
  • Yelena Y. Janjigian
    • 7
  • Vivian E. Strong
    • 1
    Email author
  1. 1.Department of Surgery, Gastric and Mixed Tumor ServiceMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  2. 2.National Cancer InstituteNational Institutes of HealthBethesdaUSA
  3. 3.Department of Epidemiology & BiostatisticsMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  4. 4.Department of PathologyMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  5. 5.Human Oncology and Pathogenesis ProgramMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  6. 6.Marie-Josée & Henry R. Kravis Center for Molecular OncologyMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  7. 7.Department of Medicine, Memorial Sloan Kettering Cancer CenterWeill Cornell Medical CollegeNew YorkUSA

Personalised recommendations