Advertisement

Annals of Surgical Oncology

, Volume 25, Issue 1, pp 18–27 | Cite as

Intraoperative Margin Management in Breast-Conserving Surgery: A Systematic Review of the Literature

  • Richard J. GrayEmail author
  • Barbara A. Pockaj
  • Erin Garvey
  • Sarah Blair
Breast Oncology

Abstract

Background

Breast surgeons have a wide variety of intraoperative techniques available to help achieve low rates for positive margins of excision, with variable levels of evidence.

Methods

A systematic review of the medical literature from 1995 to July 2016 was conducted, with 434 abstracts identified and evaluated. The analysis included 106 papers focused on intraoperative management of breast cancer margins and contained actionable data.

Results

Ultrasound-guided lumpectomy for palpable tumors, as an alternative to palpation guidance, can lower positive margin rates, but the effect when used as an alternative to wire localization (WL) for nonpalpable tumors is less certain. Localization techniques such as radioactive seed localization and radioguided occult lesion localization were found potentially to lower positive margin rates as alternatives to WL depending on baseline positive margin rates. Intraoperative pathologic methods including gross histology, frozen section analysis, and imprint cytology all have the potential to lower the rates of positive margins. Cavity-shave margins and the Marginprobe device both lower rates of positive margins, with some potential for negative cosmetic effects. Specimen radiography and multiple miscellaneous techniques did not affect positive margin rates or provided too little evidence for formation of a conclusion.

Conclusions

A systematic review of the literature showed evidence that several intraoperative techniques and actions can lower the rates of positive margins. These results are presented together with graded recommendations.

References

  1. 1.
    Katipamula R, Degnim AC, Hoskin T, et al. Trends in mastectomy rates at the Mayo Clinic Rochester: effect of surgical year and preoperative magnetic resonance imaging. J Clin Oncol. 2009;27:4082–8.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Moran MS, Schnitt SJ, Giuliano AE, et al. Society of Surgical Oncology-American Society for Radiation Oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in stages I and II invasive breast cancer. Ann Surg Oncol. 2014;21:704–16.CrossRefPubMedGoogle Scholar
  3. 3.
    Burns PB, Rohrich RJ, Chung KC. The levels of evidence and their role in evidence-based medicine. Plast Reconstr Surg. 2011;128:305–10.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    St John ER, Al-Khudairi R, Ashrafian H, et al. Diagnostic accuracy of intraoperative techniques for margin assessment in breast cancer surgery: a meta-analysis. Ann Surg. 2016;1–11. doi: 10.1097/SLA.0000000000001897.
  5. 5.
    Moschetta M, Telegrafo M, Introna T, et al. Role of specimen US for predicting resection margin status in breast conserving therapy. Giornale Chir. 2015;36:201–4.Google Scholar
  6. 6.
    Scaranelo AM, Moshonov H, Escallon J. A prospective pilot study of analysis of surgical margins of breast cancers using high-resolution sonography. SpringerPlus. 2016;5:251.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Chan BK, Wiseberg-Firtell JA, Jois RH, Jensen K, Audisio RA. Localization techniques for guided surgical excision of non-palpable breast lesions. Cochrane Database Syst Rev. 2015;CD009206.Google Scholar
  8. 8.
    Janssen NN, Nijkamp J, Alderliesten T, Loo CE, Rutgers EJ, Sonke JJ, et al. Radioactive seed localization in breast cancer treatment. Br J Surg. 2016;103:70–80.CrossRefPubMedGoogle Scholar
  9. 9.
    Balch GC, Mithani SK, Simpson JF, Kelley MC. Accuracy of intraoperative gross examination of surgical margin status in women undergoing partial mastectomy for breast malignancy. Am Surg. 2005;71:22–7 (discussion 27–8).Google Scholar
  10. 10.
    Cabioglu N, Hunt KK, Sahin AA, et al. Role for intraoperative margin assessment in patients undergoing breast-conserving surgery. Ann Surg Oncol. 2007;14:1458–71.CrossRefPubMedGoogle Scholar
  11. 11.
    Fleming FJ, Hill AD, Mc Dermott EW, O’Doherty A, O’Higgins NJ, Quinn CM. Intraoperative margin assessment and re-excision rate in breast-conserving surgery. Eur J Surg Oncol. 2004;30:233–237.CrossRefPubMedGoogle Scholar
  12. 12.
    Singh M, Singh G, Hogan KT, Atkins KA, Schroen AT. The effect of intraoperative specimen inking on lumpectomy re-excision rates. World J Surg Oncol. 2010;8:4.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Blair SL, Thompson K, Rococco J, Malcarne V, Beitsch PD, Ollila DW. Attaining negative margins in breast-conservation operations: is there a consensus among breast surgeons? J Am Coll Surg. 2009;209:608–13.CrossRefPubMedGoogle Scholar
  14. 14.
    Osborn JB, Keeney GL, Jakub JW, Degnim AC, Boughey JC. Cost-effectiveness analysis of routine frozen-section analysis of breast margins compared with reoperation for positive margins. Ann Surg Oncol. 2011;18:3204–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Jorns JM, Daignault S, Sabel MS, Wu AJ. Is intraoperative frozen section analysis of re-excision specimens of value in preventing reoperation in breast-conserving therapy? Am J Clin Pathol. 2014;142:601–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Ihrai T, Quaranta D, Fouche Y, et al. Intraoperative radiological margin assessment in breast-conserving surgery. Eur J Surg Oncol. 2014;40:449–53.CrossRefPubMedGoogle Scholar
  17. 17.
    Lange M, Reimer T, Hartmann S, Glass A, Stachs A. The role of specimen radiography in breast-conserving therapy of ductal carcinoma in situ. Breast. 2016;26:73–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Chagpar AB, Butler M, Killelea BK, Horowitz NR, Stavris K, Lannin DR. Does three-dimensional intraoperative specimen imaging reduce the need for re-excision in breast cancer patients? A prospective cohort study. Am J Surg. 2015;210:886–90.CrossRefPubMedGoogle Scholar
  19. 19.
    Allweis TM, Kaufman Z, Lelcuk S, et al. A prospective, randomized, controlled, multicenter study of a real-time, intraoperative probe for positive margin detection in breast-conserving surgery. Am J Surg. 2008;196:483–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Karni T, Pappo I, Sandbank J, et al. A device for real-time, intraoperative margin assessment in breast-conservation surgery. Am J Surg. 2007;194:467–73.CrossRefPubMedGoogle Scholar
  21. 21.
    Schnabel F, Boolbol SK, Gittleman M, et al. A randomized prospective study of lumpectomy margin assessment with use of MarginProbe in patients with nonpalpable breast malignancies. Ann Surg Oncol. 2014;21:1589–95.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Thill M, Dittmer C, Baumann K, Friedrichs K, Blohmer JU. MarginProbe(R): final results of the German post-market study in breast-conserving surgery of ductal carcinoma in situ. Breast. 2014;23:94–6.CrossRefPubMedGoogle Scholar
  23. 23.
    Blohmer JU, Tanko J, Kueper J, Gross J, Volker R, Machleidt A. MarginProbe(c) reduces the rate of re-excision following breast-conserving surgery for breast cancer. Arch Gynecol Obstet. 2016;294:361–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Agresti R, Trecate G, Ferraris C, et al. Ex vivo MRI evaluation of breast tumors: a novel tool for verifying resection of nonpalpable only MRI detected lesions. Breast J. 2013;19:659–63.CrossRefPubMedGoogle Scholar
  25. 25.
    Tang R, Saksena M, Coopey SB, et al. Intraoperative micro-computed tomography (micro-CT): a novel method for determination of primary tumour dimensions in breast cancer specimens. Br J Radiol. 2016;89:20150581.CrossRefPubMedGoogle Scholar
  26. 26.
    Hirose M, Kacher DF, Smith DN, Kaelin CM, Jolesz FA. Feasibility of MR imaging-guided breast lumpectomy for malignant tumors in a 0.5-T open-configuration MR imaging system. Acad Radiol. 2002;9:933–41.CrossRefPubMedGoogle Scholar
  27. 27.
    Tafra L, Fine R, Whitworth P, et al. Prospective randomized study comparing cryo-assisted and needle-wire localization of ultrasound-visible breast tumors. Am J Surg. 2006;192:462–70.CrossRefPubMedGoogle Scholar
  28. 28.
    Dauphine C, Reicher JJ, Reicher MA, Gondusky C, Khalkhali I, Kim M. A prospective clinical study to evaluate the safety and performance of wireless localization of nonpalpable breast lesions using radiofrequency identification technology. AJR Am J Roentgenol. 2015;204:W720–3.CrossRefPubMedGoogle Scholar
  29. 29.
    Cortes-Mateos MJ, Martin D, Sandoval S, et al. Automated microscopy to evaluate surgical specimens via touch prep in breast cancer. Ann Surg Oncol. 2009;16:709–20.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Cuntz MC, Levine EA, O’Dorisio TM, et al. Intraoperative gamma detection of 125I-lanreotide in women with primary breast cancer. Ann Surg Oncol. 1999;6:367–72.CrossRefPubMedGoogle Scholar
  31. 31.
    Fine RE, Schwalke MA, Pellicane JV, Attai DJ. A novel ultrasound-guided electrosurgical loop device for intraoperative excision of breast lesions; an improvement in surgical technique. Am J Surg. 2009;198:283–6.CrossRefPubMedGoogle Scholar
  32. 32.
    Haka AS, Volynskaya Z, Gardecki JA, et al. In vivo margin assessment during partial mastectomy breast surgery using Raman spectroscopy. Cancer Res. 2006;66:3317–22.CrossRefPubMedGoogle Scholar
  33. 33.
    Keller MD, Majumder SK, Kelley MC, Meszoely IM, Boulos FI, Olivares GM, et al. Autofluorescence and diffuse reflectance spectroscopy and spectral imaging for breast surgical margin analysis. Lasers Surg Med. 2010;42:15–23.CrossRefPubMedGoogle Scholar
  34. 34.
    Keller MD, Vargis E, de Matos Granja N, Wilson RH, Mycek MA, Kelley MC, et al. Development of a spatially offset Raman spectroscopy probe for breast tumor surgical margin evaluation. J Biomed Opt. 2011;16:077006.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Martin DT, Sandoval S, Ta CN, et al. Quantitative automated image analysis system with automated debris filtering for the detection of breast carcinoma cells. Acta Cytologica. 2011;55:271–80.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Nguyen FT, Zysk AM, Chaney EJ, et al. Intraoperative evaluation of breast tumor margins with optical coherence tomography. Cancer Res. 2009;69:8790–6.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Blair SL, Wang-Rodriguez J, Cortes-Mateos MJ, et al. Enhanced touch preps improve the ease of interpretation of intraoperative breast cancer margins. Am Surg. 2007;73:973–6.PubMedGoogle Scholar
  38. 38.
    Zysk AM, Chen K, Gabrielson E, et al. Intraoperative assessment of final margins with a handheld optical imaging probe during breast-conserving surgery may reduce the reoperation rate: results of a multicenter study. Ann Surg Oncol. 2015;22:3356–62.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Chang TP, Leff DR, Shousha S, et al. Imaging breast cancer morphology using probe-based confocal laser endomicroscopy: towards a real-time intraoperative imaging tool for cavity scanning. Breast Cancer Res Treat. 2015;153:299–310.CrossRefPubMedGoogle Scholar
  40. 40.
    Erickson-Bhatt SJ, Nolan RM, Shemonski ND, et al. Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery. Cancer Res. 2015;75:3706–12.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Losken A, Pinell-White X, Hart AM, Freitas AM, Carlson GW, Styblo TM. The oncoplastic reduction approach to breast-conservation therapy: benefits for margin control. Aesth Surg J. 2014;34:1185–91.CrossRefGoogle Scholar
  42. 42.
    Bamford R, Sutton R, McIntosh J. Therapeutic mammoplasty allows for clear surgical margins in large and multifocal tumours without delaying adjuvant therapy. Breast. 2015;24:171–4.CrossRefPubMedGoogle Scholar
  43. 43.
    Rubio IT, Landolfi S, Molla M, Cortes J, Xercavins J. Breast-conservative surgery followed by radiofrequency ablation of margins decreases the need for a second surgical procedure for close or positive margins. Clin Breast Cancer. 2014;14:346–51.CrossRefPubMedGoogle Scholar
  44. 44.
    Moran MS, Schnitt SJ, Giuliano AE, et al. Society of Surgical Oncology–American Society for Radiation Oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in stages I and II invasive breast cancer. Int J Radiat Oncol Biol Phys. 2014;88:553–64.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Varkey P, Reller MK, Resar RK. Basics of quality improvement in health care. Mayo Clinic Proc. 2007;82:735–9.CrossRefGoogle Scholar
  46. 46.
    Rahusen FD, Pijpers R, Van Diest PJ, Bleichrodt RP, Torrenga H, Meijer S. The implementation of the sentinel node biopsy as a routine procedure for patients with breast cancer. Surgery. 2000;128:6–12.CrossRefPubMedGoogle Scholar
  47. 47.
    Krekel NM, Haloua MH, Lopes Cardozo AM, et al. Intraoperative ultrasound guidance for palpable breast cancer excision (COBALT trial): a multicentre, randomised controlled trial. Lancet Oncol. 2013;14:48–54.CrossRefPubMedGoogle Scholar
  48. 48.
    Moore MM, Whitney LA, Cerilli L, Imbrie JZ, Bunch M, Simpson VB, et al. Intraoperative ultrasound is associated with clear lumpectomy margins for palpable infiltrating ductal breast cancer. Ann Surg. 2001;233:761–8.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Davis KM, Hsu CH, Bouton ME, Wilhelmson KL, Komenaka IK. Intraoperative ultrasound can decrease the re-excision lumpectomy rate in patients with palpable breast cancers. Am Surg. 2011;77:720–5.PubMedGoogle Scholar
  50. 50.
    Olsha O, Shemesh D, Carmon M, Sibirsky O, Abu Dalo R, Rivkin L, et al. Resection margins in ultrasound-guided breast-conserving surgery. Ann Surg Oncol. 2011;18:447–52.CrossRefPubMedGoogle Scholar
  51. 51.
    Eichler C, Hubbel A, Zarghooni V, Thomas A, Gluz O, Stoff-Khalili M, et al. Intraoperative ultrasound: improved resection rates in breast-conserving surgery. Anticancer Res. 2012;32:1051–6.PubMedGoogle Scholar
  52. 52.
    Barentsz MW, van Dalen T, Gobardhan PD, et al. Intraoperative ultrasound guidance for excision of nonpalpable invasive breast cancer: a hospital-based series and an overview of the literature. Breast Cancer Res Treat. 2012;135:209–19.CrossRefPubMedGoogle Scholar
  53. 53.
    Harlow SP, Krag DN, Ames SE, Weaver DL. Intraoperative ultrasound localization to guide surgical excision of nonpalpable breast carcinoma. J Am Coll Surg. 1999;189:241–6.CrossRefPubMedGoogle Scholar
  54. 54.
    James TA, Harlow S, Sheehey-Jones J, et al. Intraoperative ultrasound versus mammographic needle localization for ductal carcinoma in situ. Ann Surg Oncol. 2009;16:1164–9.CrossRefPubMedGoogle Scholar
  55. 55.
    Morris OJ, Knight V, Logan D. Intraoperative ultrasound versus wire-guided localization in the surgical management of nonpalpable breast cancer. Breast Dis. 2014;34:157–63.CrossRefPubMedGoogle Scholar
  56. 56.
    Eggemann H, Ignatov T, Costa SD, Ignatov A. Accuracy of ultrasound-guided breast-conserving surgery in the determination of adequate surgical margins. Breast Cancer Res Treat. 2014;145:129–36.CrossRefPubMedGoogle Scholar
  57. 57.
    Gray RJ, Salud C, Nguyen K, et al. Randomized prospective evaluation of a novel technique for biopsy or lumpectomy of nonpalpable breast lesions: radioactive seed versus wire localization. Ann Surg Oncol. 2001;8:711–5.CrossRefPubMedGoogle Scholar
  58. 58.
    Lovrics PJ, Goldsmith CH, Hodgson N, et al. A multicentered, randomized, controlled trial comparing radioguided seed localization to standard wire localization for nonpalpable, invasive and in situ breast carcinomas. Ann Surg Oncol. 2011;18:3407–14.CrossRefPubMedGoogle Scholar
  59. 59.
    Ahmed M, Douek M. Radioactive seed localisation (RSL) in the treatment of nonpalpable breast cancers: systematic review and meta-analysis. Breast. 2013;22:383–8.CrossRefPubMedGoogle Scholar
  60. 60.
    Cox CE, Furman B, Stowell N, et al. Radioactive seed localization breast biopsy and lumpectomy: can specimen radiographs be eliminated? Ann Surg Oncol. 2003;10:1039–47.CrossRefPubMedGoogle Scholar
  61. 61.
    Gobardhan PD, de Wall LL, van der Laan L, et al. The role of radioactive iodine-125 seed localization in breast-conserving therapy following neoadjuvant chemotherapy. Ann Oncol. 2013;24:668–73.CrossRefPubMedGoogle Scholar
  62. 62.
    Gray RJ, Pockaj BA, Karstaedt PJ, Roarke MC. Radioactive seed localization of nonpalpable breast lesions is better than wire localization. Am J Surg. 2004;188:377–80.CrossRefPubMedGoogle Scholar
  63. 63.
    Hughes JH, Mason MC, Gray RJ, et al. A multi-site validation trial of radioactive seed localization as an alternative to wire localization. Breast J. 2008;14:153–7.CrossRefPubMedGoogle Scholar
  64. 64.
    Murphy JO, Moo TA, King TA, et al. Radioactive seed localization compared to wire localization in breast-conserving surgery: initial 6-month experience. Ann Surg Oncol. 2013;20:4121–7.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Donker M, Drukker CA, Valdes Olmos RA, et al. Guiding breast-conserving surgery in patients after neoadjuvant systemic therapy for breast cancer: a comparison of radioactive seed localization with the ROLL technique. Ann Surg Oncol. 2013;20:2569–75.CrossRefPubMedGoogle Scholar
  66. 66.
    Chiu JC, Ajmal S, Zhu X, Griffith E, Encarnacion T, Barr L. Radioactive seed localization of nonpalpable breast lesions in an academic comprehensive cancer program community hospital setting. Am Surg. 2014;80:675–9.PubMedGoogle Scholar
  67. 67.
    van der Noordaa ME, Pengel KE, Groen E, et al. The use of radioactive iodine-125 seed localization in patients with nonpalpable breast cancer: a comparison with the radioguided occult lesion localization with 99 m technetium. Eur J Surg Oncol. 2015;41:553–8.CrossRefPubMedGoogle Scholar
  68. 68.
    Sharek D, Zuley ML, Zhang JY, Soran A, Ahrendt GM, Ganott MA. Radioactive seed localization versus wire localization for lumpectomies: a comparison of outcomes. AJR Am J Roentgenol. 2015;204:872–7.CrossRefPubMedGoogle Scholar
  69. 69.
    Postma EL, Koffijberg H, Verkooijen HM, Witkamp AJ, van den Bosch MA, van Hillegersberg R. Cost effectiveness of radioguided occult lesion localization (ROLL) versus wire-guided localization (WGL) in breast-conserving surgery for nonpalpable breast cancer: results from a randomized controlled multicenter trial. Ann Surg Oncol. 2013;20:2219–26.CrossRefPubMedGoogle Scholar
  70. 70.
    Medina-Franco H, Abarca-Perez L, Garcia-Alvarez MN, Ulloa-Gomez JL, Romero-Trejo C, Sepulveda-Mendez J. Radioguided occult lesion localization (ROLL) versus wire-guided lumpectomy for nonpalpable breast lesions: a randomized prospective evaluation. J Surg Oncol. 2008;97:108–11.CrossRefPubMedGoogle Scholar
  71. 71.
    Sajid MS, Parampalli U, Haider Z, Bonomi R. Comparison of radioguided occult lesion localization (ROLL) and wire localization for nonpalpable breast cancers: a meta-analysis. J Surg Oncol. 2012;105:852–8.CrossRefPubMedGoogle Scholar
  72. 72.
    Audisio RA, Nadeem R, Harris O, Desmond S, Thind R, Chagla LS. Radioguided occult lesion localisation (ROLL) is available in the UK for impalpable breast lesions. Ann R Coll Surg Engl. 2005;87:92–5.CrossRefGoogle Scholar
  73. 73.
    Belloni E, Canevari C, Panizza P, et al. Nonpalpable breast lesions: preoperative radiological guidance in radioguided occult lesion localisation (ROLL). Radiol Med. 2011;116:564–74.CrossRefPubMedGoogle Scholar
  74. 74.
    Duarte GM, Cabello C, Torresan RZ, et al. Radioguided intraoperative margins evaluation (RIME): preliminary results of a new technique to aid breast cancer resection. Eur J Surg Oncol. 2007;33:1150–57.CrossRefPubMedGoogle Scholar
  75. 75.
    Lavoue V, Nos C, Clough KB, et al. Simplified technique of radioguided occult lesion localization (ROLL) plus sentinel lymph node biopsy (SNOLL) in breast carcinoma. Ann Surg Oncol. 2008;15:2556–61.CrossRefPubMedGoogle Scholar
  76. 76.
    Nadeem R, Chagla LS, Harris O, Desmond S, Thind R, Titterrell C, et al. Occult breast lesions: s comparison between radioguided occult lesion localisation (ROLL) vs wire-guided lumpectomy (WGL). Breast. 2005;14:283–9.CrossRefPubMedGoogle Scholar
  77. 77.
    Zgajnar J, Hocevar M, Frkovic-Grazio S, Hertl K, Schweiger E, Besic N. Radioguided occult lesion localization (ROLL) of the nonpalpable breast lesions. Neoplasma. 2004;51:385–9.PubMedGoogle Scholar
  78. 78.
    Takacs T, Paszt A, Simonka Z, et al. Radioguided occult lesion localisation versus wire-guided lumpectomy in the treatment of nonpalpable breast lesions. POR Pathol Oncol Res. 2013;19:267–73.CrossRefPubMedGoogle Scholar
  79. 79.
    Esbona K, Li Z, Wilke LG. Intraoperative imprint cytology and frozen section pathology for margin assessment in breast-conservation surgery: a systematic review. Ann Surg Oncol. 2012;19:3236–45.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Camp ER, McAuliffe PF, Gilroy JS, Morris CG, Lind DS, Mendenhall NP, et al. Minimizing local recurrence after breast-conserving therapy using intraoperative shaved margins to determine pathologic tumor clearance. J Am Coll Surg. 2005;201:855–61.CrossRefPubMedGoogle Scholar
  81. 81.
    Caruso F, Ferrara M, Castiglione G, et al. Therapeutic mammaplasties: Full local control of breast cancer in one surgical stage with frozen section. Eur J Surg Oncol. 2011;37:871–5.CrossRefPubMedGoogle Scholar
  82. 82.
    Cendan JC, Coco D, Copeland EM III. Accuracy of intraoperative frozen section analysis of breast cancer lumpectomy-bed margins. J Am Coll Surg. 2005;201:194–8.CrossRefPubMedGoogle Scholar
  83. 83.
    Chen K, Zeng Y, Jia H, et al. Clinical outcomes of breast-conserving surgery in patients using a modified method for cavity margin assessment. Ann Surg Oncol. 2012;19:3386–94.CrossRefPubMedGoogle Scholar
  84. 84.
    Noguchi M, Minami M, Earashi M, Taniya T, Miyazaki I, Mizukami Y, et al. Intraoperative histologic assessment of surgical margins and lymph node metastasis in breast-conserving surgery. J Surg Oncol. 1995;60:185–90.CrossRefPubMedGoogle Scholar
  85. 85.
    Riedl O, Fitzal F, Mader N, et al. Intraoperative frozen section analysis for breast-conserving therapy in 1016 patients with breast cancer. Eur J Surg Oncol. 2009;35:264–70.CrossRefPubMedGoogle Scholar
  86. 86.
    Weber S, Storm FK, Stitt J, Mahvi DM. The role of frozen section analysis of margins during breast-conservation surgery. Cancer J Sci Am. 1997;3:273–7.PubMedGoogle Scholar
  87. 87.
    Cox CE, Hyacinthe M, Gonzalez RJ, et al. Cytologic evaluation of lumpectomy margins in patients with ductal carcinoma in situ: clinical outcome. Ann Surg Oncol. 1997;4:644–9.CrossRefPubMedGoogle Scholar
  88. 88.
    Creager AJ, Geisinger KR, Shiver SA, et al. Intraoperative evaluation of sentinel lymph nodes for metastatic breast carcinoma by imprint cytology. Mod Pathol. 2002;15:1140–7.CrossRefPubMedGoogle Scholar
  89. 89.
    Mannell A. Breast-conserving therapy in breast cancer patients: a 12-year experience. S Afr J Surg. 2005;43:28–30.Google Scholar
  90. 90.
    Valdes EK, Boolbol SK, Ali I, Feldman SM, Cohen JM. Intraoperative touch preparation cytology for margin assessment in breast-conservation surgery: does it work for lobular carcinoma? Ann Surg Oncol. 2007;14:2940–5.CrossRefPubMedGoogle Scholar
  91. 91.
    Boughey JC, Hieken TJ, Jakub JW, et al. Impact of analysis of frozen section margin on reoperation rates in women undergoing lumpectomy for breast cancer: evaluation of the National Surgical Quality Improvement Program data. Surgery. 2014;156:190–7.CrossRefPubMedGoogle Scholar
  92. 92.
    Chagpar AB, Killelea BK, Tsangaris TN, et al. A randomized, controlled trial of cavity-shave margins in breast cancer. N Engl J Med. 2015;373:503–10.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Fukamachi K, Ishida T, Usami S, Takeda M, Watanabe M, Sasano H, et al. Total-circumference intraoperative frozen section analysis reduces margin-positive rate in breast-conservation surgery. Jpn J Clin Oncol. 2010;40:513–20.CrossRefPubMedGoogle Scholar
  94. 94.
    Janes SEJ, Stankhe M, Singh S, Isgar B. Systematic cavity shaves reduces close margins and re-excision rates in breast-conserving surgery. Breast. 2006;15:326–30.CrossRefPubMedGoogle Scholar
  95. 95.
    Hequet D, Bricou A, Koual M, et al. Systematic cavity shaving: modifications of breast cancer management and long-term local recurrence: a multicentre study. Eur J Surg Oncol. 2013;39:899–905.CrossRefPubMedGoogle Scholar
  96. 96.
    Hewes JC, Imkampe A, Haji A, Bates T. Importance of routine cavity sampling in breast-conservation surgery. Br J Surg. 2009;96:47–53.CrossRefPubMedGoogle Scholar
  97. 97.
    Keskek M, Kothari M, Ardehali B, Betambeau N, Nasiri N, Gui GP. Factors predisposing to cavity margin positivity following conservation surgery for breast cancer. Eur J Surg Oncol. 2004;30:1058–64.CrossRefPubMedGoogle Scholar
  98. 98.
    Kobbermann A, Unzeitig A, Xie XJ, et al. Impact of routine cavity-shave margins on breast cancer re-excision rates. Ann Surg Oncol. 2011;18:1349–55.CrossRefPubMedGoogle Scholar
  99. 99.
    Malik HZ, George WD, Mallon EA, Harnett AN, Macmillan RD, Purushotham AD. Margin assessment by cavity shaving after breast-conserving surgery: analysis and follow-up of 543 patients. Eur J Surg Oncol. 1999;25:464–9.CrossRefPubMedGoogle Scholar
  100. 100.
    Rizzo M, Iyengar R, Gabram SG, Park J, Birdsong G, Chandler KL, et al. The effects of additional tumor cavity sampling at the time of breast-conserving surgery on final margin status, volume of resection, and pathologist workload. Ann Surg Oncol. 2010;17:228–34.CrossRefPubMedGoogle Scholar
  101. 101.
    Tengher-Barna I, Hequet D, Reboul-Marty J, et al. Prevalence and predictive factors for the detection of carcinoma in cavity margin performed at the time of breast lumpectomy. Mod Pathol. 2009;22:299–305.CrossRefPubMedGoogle Scholar
  102. 102.
    Pata G, Bartoli M, Bianchi A, Pasini M, Roncali S, Ragni F. Additional cavity shaving at the time of breast-conserving surgery enhances accuracy of margin status examination. Ann Surg Oncol. 2016;23:2802–08.CrossRefPubMedGoogle Scholar

Copyright information

© Society of Surgical Oncology 2017

Authors and Affiliations

  • Richard J. Gray
    • 1
    Email author
  • Barbara A. Pockaj
    • 1
  • Erin Garvey
    • 1
  • Sarah Blair
    • 2
  1. 1.Department of SurgeryMayo ClinicPhoenixUSA
  2. 2.UCSD Department of SurgeryUCSD Cancer CenterEncinitasUSA

Personalised recommendations