Annals of Surgical Oncology

, Volume 24, Issue 4, pp 990–997 | Cite as

Standard Clinical Protocol for Bidirectional Hyperthermic Intraperitoneal Chemotherapy (HIPEC): Systemic Leucovorin, 5-Fluorouracil, and Heated Intraperitoneal Oxaliplatin in a Chloride-Containing Carrier Solution

  • Akash M. Mehta
  • Alwin D. R. Huitema
  • Jacobus W. A. Burger
  • Alexandra R. M. Brandt-Kerkhof
  • Sander F. van den Heuvel
  • Victor J. Verwaal
Gastrointestinal Oncology

Abstract

Background

Intraperitoneal chemotherapy has an established role in the treatment of selected patients with colorectal peritoneal metastases. Oxaliplatin is highly suitable as a chemotherapeutic agent for hyperthermic intraperitoneal chemotherapy (HIPEC), but its use to date has been limited because of the morbidity caused by severe electrolyte and glycemic imbalances associated with 5% glucose as its carrier solution. This report provides an overview of the development, rationale, and application of intraperitoneal chemotherapy and the use of various drugs and carrier solutions. A novel, evidence-based protocol for bidirectional oxaliplatin-based HIPEC in a physiologic carrier solution (Dianeal PD4 dextrose 1.36%) is presented, and its impact on electrolyte and glucose levels is demonstrated.

Methods

After implementation of the new protocol, the serum electrolyte (sodium, potassium, and chloride) levels, glucose levels, and intravenous insulin requirements were intensively measured in eight consecutive cases immediately before HIPEC (T = 0), immediately after HIPEC (T = 30), 1 h after HIPEC (T = 60), and 3 h after HIPEC (T = 180).

Results

The median sodium levels were 140 mmol/L at T = 0, 138 mmol/L at T = 30, 140 mmol/L at T = 60, and 140 mmol/L at T = 180. The respective median potassium levels were 4.6, 4.2, 3.7, and 3.9 mmol/L, and the respective median chloride levels were 112, 111, 111, and 112 mmol/L. The respective median glucose levels were 9, 11.5, 10.7, and 8.6 mmol/L. The median insulin requirements were respectively 0.5, 1.5, 1.2, and 0 U/h. None of the patients were diabetic.

Conclusion

Using a novel protocol for bidirectional oxaliplatin-based HIPEC in Dianeal instead of 5% glucose, the observed fluctuations in this study were minimal and not clinically relevant compared with historical values for electrolyte and glycemic changes using 5% glucose as a HIPEC carrier solution. This novel protocol leads to only minimal and clinically irrelevant electrolyte and glycemic disturbances, and its adoption as the standard protocol for oxaliplatin-based HIPEC should be considered.

References

  1. 1.
    Shingleton WW, Parker RT, Mahaley S. Abdominal perfusion for cancer chemotherapy. Ann Surg 1960;152:583–91.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ryan RF, Krementz ET, Creech O Jr, Winblad JN, Chamblee W, Cheek H. Selected perfusion of isolated viscera with chemotherapeutic agents using an extracorporeal circuit. Surg Forum. 1957;8:158–61.PubMedGoogle Scholar
  3. 3.
    Hart GD. Palliative management of gastrointestinal cancer. Can Med Assoc Jl. 1964;90:1265–8.Google Scholar
  4. 4.
    Vaillant JC, Nordlinger B, Deuffic S, et al. Adjuvant intraperitoneal 5-fluorouracil in high-risk colon cancer: a multicenter phase III trial. Ann Surg. 2000;231:449–56.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Scheithauer W, Kornek G, Rosen H, et al. Combined intraperitoneal plus intravenous chemotherapy after curative resection for colonic adenocarcinoma. Eur J Cancer. 1995;31A:1981–6.CrossRefPubMedGoogle Scholar
  6. 6.
    Scheithauer W, Kornek GV, Marczell A, et al. Combined intravenous and intraperitoneal chemotherapy with fluorouracil+leucovorin vs fluorouracil+levamisole for adjuvant therapy of resected colon carcinoma. Br J Cancer. 1998;77:1349–54.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Sugarbaker PH, Gianola FJ, Speyer JC, Wesley R, Barofsky I, Meyers CE. Prospective, randomized trial of intravenous versus intraperitoneal 5-fluorouracil in patients with advanced primary colon or rectal cancer. Surgery. 1985;98:414–22.PubMedGoogle Scholar
  8. 8.
    Dedrick RL, Myers CE, Bungay PM, DeVita VT Jr. Pharmacokinetic rationale for peritoneal drug administration in the treatment of ovarian cancer. Cancer Treat Rep. 1978;62:1–11.PubMedGoogle Scholar
  9. 9.
    Markman M, Howell SB, Lucas WE, Pfeifle CE, Green MR. Combination intraperitoneal chemotherapy with cisplatin, cytarabine, and doxorubicin for refractory ovarian carcinoma and other malignancies principally confined to the peritoneal cavity. J Clin Oncol. 1984;2:1321–6.CrossRefPubMedGoogle Scholar
  10. 10.
    Howell SB, Pfeifle CL, Wung WE, et al. Intraperitoneal cisplatin with systemic thiosulfate protection. Ann Intern Med. 1982;97:845–51.CrossRefPubMedGoogle Scholar
  11. 11.
    Sugarbaker PH, Averbach AM, Jacquet P, Stuart OA, Stephens AD. Hyperthermic intraoperative intreperitoneal chemotherapy (HIIC) with mitomycin C. Surg Technol Int. 1996;5:245–9.PubMedGoogle Scholar
  12. 12.
    Jacquet P, Stephens AD, Averbach AM, et al. Analysis of morbidity and mortality in 60 patients with peritoneal carcinomatosis treated by cytoreductive surgery and heated intraoperative intraperitoneal chemotherapy. Cancer. 1996;77:2622–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Jacquet P, Averbach A, Stephens AD, Stuart OA, Chang D, Sugarbaker PH. Heated intraoperative intraperitoneal mitomycin C and early postoperative intraperitoneal 5-fluorouracil: pharmacokinetic studies. Oncology. 1998;55:130–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Verwaal VJ, van Ruth S, de Bree E, et al. Randomized trial of cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy and palliative surgery in patients with peritoneal carcinomatosis of colorectal cancer. J Clin Oncol. 2003;21:3737–43.CrossRefPubMedGoogle Scholar
  15. 15.
    Verwaal VJ, Bruin S, Boot H, van Slooten G, van Tinteren H. 8-Year follow-up of randomized trial: cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy in patients with peritoneal carcinomatosis of colorectal cancer. Ann Surg Oncol. 2008;15:2426–32.CrossRefPubMedGoogle Scholar
  16. 16.
    Elias D, Lefevre JH, Chevalier J, et al. Complete cytoreductive surgery plus intraperitoneal chemohyperthermia with oxaliplatin for peritoneal carcinomatosis of colorectal origin. J Clin Oncol. 2009;27:681–5.CrossRefPubMedGoogle Scholar
  17. 17.
    Kuijpers AM, Mirck B, Aalbers AG, et al. Cytoreduction and HIPEC in The Netherlands: nationwide long-term outcome following the Dutch protocol. Ann Surg Oncol. 2013;20(13):4224–30.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Verwaal VJ, van Tinteren H, van Ruth S, Zoetmulder FA. Predicting the survival of patients with peritoneal carcinomatosis of colorectal origin treated by aggressive cytoreduction and hyperthermic intraperitoneal chemotherapy. Br J Surg. 2004;91:739–46.CrossRefPubMedGoogle Scholar
  19. 19.
    Verwaal VJ, van Ruth S, Witkamp A, Boot H, van Slooten G, Zoetmulder FA. Long-term survival of peritoneal carcinomatosis of colorectal origin. Ann Surg Oncol. 2005;12:65–71.CrossRefPubMedGoogle Scholar
  20. 20.
    Franko J, Shi Q, Goldman CD, et al. Treatment of colorectal peritoneal carcinomatosis with systemic chemotherapy: a pooled analysis of north central cancer treatment group phase III trials N9741 and N9841. J Clin Oncol. 2012;30:263–7.CrossRefPubMedGoogle Scholar
  21. 21.
    Klaver YL, Simkens LH, Lemmens VE, et al. Outcomes of colorectal cancer patients with peritoneal carcinomatosis treated with chemotherapy with and without targeted therapy. Eur J Surg Oncol. 2012;38:617–23.CrossRefPubMedGoogle Scholar
  22. 22.
    Moran B, Cecil T, Chandrakumaran K, Arnold S, Mohamed F, Venkatasubramaniam A. The results of cytoreductive surgery and hyperthermic intraperitoneal chemotherapy in 1200 patients with peritoneal malignancy. Colorectal Dis. 2015;17:772–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Yan TD, Deraco M, Baratti D, et al. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for malignant peritoneal mesothelioma: multi-institutional experience. J Clin Oncol. 2009;27:6237–42.CrossRefPubMedGoogle Scholar
  24. 24.
    Mirnezami R, Mehta AM, Chandrakumaran K, et al. Cytoreductive surgery in combination with hyperthermic intraperitoneal chemotherapy improves survival in patients with colorectal peritoneal metastases compared with systemic chemotherapy alone. Br J Cancer. 2014;111:1500–8.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Cascales-Campos PA, Gil J, Gil E, et al. Treatment of microscopic disease with hyperthermic intraoperative intraperitoneal chemotherapy after complete cytoreduction improves disease-free survival in patients with stage IIIC/IV ovarian cancer. Ann Surg Oncol. 2014;21:2383–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Glehen O, Passot G, Villeneuve L, et al. GASTRICHIP: D2 resection and hyperthermic intraperitoneal chemotherapy in locally advanced gastric carcinoma: a randomized and multicenter phase III study. BMC Cancer. 2014;14:183.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Le Brun JF, Campion L, Berton-Rigaud D, et al. Survival benefit of hyperthermic intraperitoneal chemotherapy for recurrent ovarian cancer: a multi-institutional case control study. Ann Surg Oncol. 2014;21:3621–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Elias D, Honore C, Dumont F, et al. Results of systematic second-look surgery plus HIPEC in asymptomatic patients presenting a high risk of developing colorectal peritoneal carcinomatosis. Ann Surg. 2011;254:289–93.CrossRefPubMedGoogle Scholar
  29. 29.
    Honore C, Goere D, Souadka A, Dumont F, Elias D. Definition of patients presenting a high risk of developing peritoneal carcinomatosis after curative surgery for colorectal cancer: a systematic review. Ann Surg Oncol. 2013;20:183–92.CrossRefPubMedGoogle Scholar
  30. 30.
    Klaver CE, Musters GD, Bemelman WA, et al. Adjuvant hyperthermic intraperitoneal chemotherapy (HIPEC) in patients with colon cancer at high risk of peritoneal carcinomatosis: the COLOPEC randomized multicentre trial. BMC Cancer. 2015;15:428.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Witkamp AJ, de Bree E, Van Goethem R, Zoetmulder FA. Rationale and techniques of intra-operative hyperthermic intraperitoneal chemotherapy. Cancer Treat Rev. 2001;27:365–74.CrossRefPubMedGoogle Scholar
  32. 32.
    Pestieau SR, Schnake KJ, Stuart OA, Sugarbaker PH. Impact of carrier solutions on pharmacokinetics of intraperitoneal chemotherapy. Cancer Chemother Pharmacol. 2001;47:269–76.CrossRefPubMedGoogle Scholar
  33. 33.
    Mohamed F, Sugarbaker PH. Carrier solutions for intraperitoneal chemotherapy. Surg Oncol Clin North Am. 2003;12:813–24.CrossRefGoogle Scholar
  34. 34.
    Mohamed F, Marchettini P, Stuart OA, Yoo D, Sugarbaker PH. A comparison of hetastarch and peritoneal dialysis solution for intraperitoneal chemotherapy delivery. Eur J Surg Oncol. 2003;29:261–5.CrossRefPubMedGoogle Scholar
  35. 35.
    Mohamed F, Marchettini P, Stuart OA, Sugarbaker PH. Pharmacokinetics and tissue distribution of intraperitoneal paclitaxel with different carrier solutions. Cancer Chemother Pharmacol. 2003;52:405–10.CrossRefPubMedGoogle Scholar
  36. 36.
    Mohamed F, Stuart OA, Sugarbaker PH. Pharmacokinetics and tissue distribution of intraperitoneal docetaxel with different carrier solutions. J Surg Res. 2003;113:114–20.CrossRefPubMedGoogle Scholar
  37. 37.
    Kusamura S, Dominique E, Baratti D, Younan R, Deraco M. Drugs, carrier solutions, and temperature in hyperthermic intraperitoneal chemotherapy. J Surg Oncol. 2008;98:247–52.CrossRefPubMedGoogle Scholar
  38. 38.
    Holmes CJ, Shockley TR. Strategies to reduce glucose exposure in peritoneal dialysis patients. Perit Dial Int. 2000;20(Suppl 2):S37–S41.PubMedGoogle Scholar
  39. 39.
    Sun Y, Mills D, Ing TS, Shapiro JI, Tzamaloukas AH. Body sodium, potassium, and water in peritoneal dialysis-associated hyponatremia. Perit Dial Int. 2014;34:253–9.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Lam JY, McConnell YJ, Rivard JD, Temple WJ, Mack LA. Hyperthermic intraperitoneal chemotherapy+early postoperative intraperitoneal chemotherapy versus hyperthermic intraperitoneal chemotherapy alone: assessment of survival outcomes for colorectal and high-grade appendiceal peritoneal carcinomatosis. Am J Surg. 2015;210(3):424–30.CrossRefPubMedGoogle Scholar
  41. 41.
    Cashin PH, Graf W, Nygren P, Mahteme H. Intraoperative hyperthermic versus postoperative normothermic intraperitoneal chemotherapy for colonic peritoneal carcinomatosis: a case-control study. Ann Oncol. 2012;2011/06/21:647–52.CrossRefGoogle Scholar
  42. 42.
    Tomasz M, Palom Y. The mitomycin bioreductive antitumor agents: cross-linking and alkylation of DNA as the molecular basis of their activity. Pharmacol Ther. 1997;1998/04/16:73–87.CrossRefGoogle Scholar
  43. 43.
    Cummings J, Spanswick VJ, Tomasz M, Smyth JF. Enzymology of mitomycin C metabolic activation in tumour tissue: implications for enzyme-directed bioreductive drug development. Biochem Pharmacol. 1998;1998/10/08:405–14.Google Scholar
  44. 44.
    Spanswick VJ, Cummings J, Smyth JF. Current issues in the enzymology of mitomycin C metabolic activation. Gen Pharmacol. 1998;1998/10/29:539–44.CrossRefGoogle Scholar
  45. 45.
    Gan Y, Mo Y, Kalns JE, et al. Expression of DT-diaphorase and cytochrome P450 reductase correlates with mitomycin C activity in human bladder tumors. Clin Cancer Res. 2001;7(5):1313–9.PubMedGoogle Scholar
  46. 46.
    Mikami K, Naito M, Tomida A, Yamada M, Sirakusa T, Tsuruo T. DT-diaphorase as a critical determinant of sensitivity to mitomycin C in human colon and gastric carcinoma cell lines. Cancer Res. 1996;1996/06/15:2823–6.Google Scholar
  47. 47.
    Traver RD, Horikoshi T, Danenberg KD, et al. NAD(P)H:quinone oxidoreductase gene expression in human colon carcinoma cells: characterization of a mutation which modulates DT-diaphorase activity and mitomycin sensitivity. Cancer Res. 1992;52(4):797–802.PubMedGoogle Scholar
  48. 48.
    Fleming RA, Drees J, Loggie BW, et al. Clinical significance of a NAD(P)H: quinone oxidoreductase 1 polymorphism in patients with disseminated peritoneal cancer receiving intraperitoneal hyperthermic chemotherapy with mitomycin C. Pharmacogenet Genom. 2002;12(1):31–7.CrossRefGoogle Scholar
  49. 49.
    van Ruth S, Verwaal VJ, Zoetmulder FA. Pharmacokinetics of intraperitoneal mitomycin C. Surg Oncol Clin North Am. 2003;12:771–80.CrossRefGoogle Scholar
  50. 50.
    van Ruth S, Mathot RA, Sparidans RW, Beijnen JH, Verwaal VJ, Zoetmulder FA. Population pharmacokinetics and pharmacodynamics of mitomycin during intraoperative hyperthermic intraperitoneal chemotherapy. Clin Pharmacokinet. 2004;43:131–43.CrossRefPubMedGoogle Scholar
  51. 51.
    Verwaal VJ, van TH, Ruth SV, Zoetmulder FA. Toxicity of cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. J Surg Oncol. 2004;85:61–7.CrossRefPubMedGoogle Scholar
  52. 52.
    Hompes D, D’Hoore A, Wolthuis A, et al. The use of oxaliplatin or mitomycin C in HIPEC treatment for peritoneal carcinomatosis from colorectal cancer: a comparative study. J Surg Oncol. 2014;109:527–32.CrossRefPubMedGoogle Scholar
  53. 53.
    Raymond E, Faivre S, Chaney S, Woynarowski J, Cvitkovic E. Cellular and molecular pharmacology of oxaliplatin. Mol Cancer Ther. 2002;2002/12/07:227–35.Google Scholar
  54. 54.
    Graham MA, Lockwood GF, Greenslade D, Brienza S, Bayssas M, Gamelin E. Clinical pharmacokinetics of oxaliplatin: a critical review. Clin Cancer Res. 2000;2000/04/25:1205–18.Google Scholar
  55. 55.
    Jerremalm E, Wallin I, Ehrsson H. New insights into the biotransformation and pharmacokinetics of oxaliplatin. J Pharm Sci. 2009;2009/04/03:3879–85.CrossRefGoogle Scholar
  56. 56.
    Luo FR, Wyrick SD, Chaney SG. Cytotoxicity, cellular uptake, and cellular biotransformations of oxaliplatin in human colon carcinoma cells. Oncol Res. 1998;1999/06/15:595–603.Google Scholar
  57. 57.
    Andre T, Boni C, Mounedji-Boudiaf L, et al. Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med. 2004;350:2343–51.CrossRefPubMedGoogle Scholar
  58. 58.
    Elias D, Bonnay M, Puizillou JM, et al. Heated intraoperative intraperitoneal oxaliplatin after complete resection of peritoneal carcinomatosis: pharmacokinetics and tissue distribution. Ann Oncol. 2002;13:267–72.CrossRefPubMedGoogle Scholar
  59. 59.
    Elias D, El OA, Bonnay M, et al. Human pharmacokinetic study of heated intraperitoneal oxaliplatin in increasingly hypotonic solutions after complete resection of peritoneal carcinomatosis. Oncology. 2002;63:346–52.CrossRefPubMedGoogle Scholar
  60. 60.
    Piche N, Leblond FA, Sideris L, et al. Rationale for heating oxaliplatin for the intraperitoneal treatment of peritoneal carcinomatosis: a study of the effect of heat on intraperitoneal oxaliplatin using a murine model. Ann Surg. 2011;254:138–44.CrossRefPubMedGoogle Scholar
  61. 61.
    Pestieau SR, Belliveau JF, Griffin H, Stuart OA, Sugarbaker PH. Pharmacokinetics of intraperitoneal oxaliplatin: experimental studies. J Surg Oncol. 2001;76:106–14.CrossRefPubMedGoogle Scholar
  62. 62.
    Elias D, Raynard B, Bonnay M, Pocard M. Heated intraoperative intraperitoneal oxaliplatin alone and in combination with intraperitoneal irinotecan: pharmacologic studies. Eur J Surg Oncol. 2006;32:607–13.CrossRefPubMedGoogle Scholar
  63. 63.
    Quenet F, Goere D, Mehta SS, et al. Results of two bi-institutional prospective studies using intraperitoneal oxaliplatin with or without irinotecan during HIPEC after cytoreductive surgery for colorectal carcinomatosis. Ann Surg. 2011;254:294–301.CrossRefPubMedGoogle Scholar
  64. 64.
    Jerremalm E, Hedeland M, Wallin I, Bondesson U, Ehrsson H. Oxaliplatin degradation in the presence of chloride: identification and cytotoxicity of the monochloro monooxalato complex. Pharm Res. 2004;21:891–4.CrossRefPubMedGoogle Scholar
  65. 65.
    Curis E, Provost K, Bouvet D, et al. Carboplatin and oxaliplatin decomposition in chloride medium, monitored by XAS. J Synchrotron Radiat. 2001;8(Pt 2):716–8.CrossRefPubMedGoogle Scholar
  66. 66.
    Rueth NM, Murray SE, Huddleston SJ, et al. Severe electrolyte disturbances after hyperthermic intraperitoneal chemotherapy: oxaliplatin versus mitomycin C. Ann Surg Oncol. 2011;18:174–80.CrossRefPubMedGoogle Scholar
  67. 67.
    De Somer F., Ceelen W, Delanghe J, et al. Severe hyponatremia, hyperglycemia, and hyperlactatemia are associated with intraoperative hyperthermic intraperitoneal chemoperfusion with oxaliplatin. Perit Dial Int. 2008;28:61–6.PubMedGoogle Scholar
  68. 68.
    Ceelen WP, Peeters M, Houtmeyers P, Breusegem C, De SF, Pattyn P. Safety and efficacy of hyperthermic intraperitoneal chemoperfusion with high-dose oxaliplatin in patients with peritoneal carcinomatosis. Ann Surg Oncol. 2008;15:535–41.CrossRefPubMedGoogle Scholar
  69. 69.
    Mehta AM, Van den Hoven JM, Rosing H, et al. Stability of oxaliplatin in chloride-containing carrier solutions used in hyperthermic intraperitoneal chemotherapy. Int J Pharm. 2015;479:23–7.CrossRefPubMedGoogle Scholar
  70. 70.
    Kweekel DM, Gelderblom H, Guchelaar HJ. Pharmacology of oxaliplatin and the use of pharmacogenomics to individualize therapy. Cancer Treat Rev. 2005;31:90–105.CrossRefPubMedGoogle Scholar

Copyright information

© Society of Surgical Oncology 2016

Authors and Affiliations

  • Akash M. Mehta
    • 1
  • Alwin D. R. Huitema
    • 2
  • Jacobus W. A. Burger
    • 3
  • Alexandra R. M. Brandt-Kerkhof
    • 3
  • Sander F. van den Heuvel
    • 4
  • Victor J. Verwaal
    • 5
  1. 1.Department of Surgery, Peritoneal Malignancy InstituteBasingstoke & North Hampshire HospitalBasingstokeUK
  2. 2.Department of Pharmacy and PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
  3. 3.Department of SurgeryErasmus MCRotterdamThe Netherlands
  4. 4.Department of AnaesthesiologyErasmus MCRotterdamThe Netherlands
  5. 5.Department of SurgeryAarhus University HospitalAarhusDenmark

Personalised recommendations