Annals of Surgical Oncology

, Volume 22, Supplement 3, pp 1125–1132 | Cite as

The Severity of Liver Fibrosis Influences the Prognostic Value of Inflammation-Based Scores in Hepatitis B-Associated Hepatocellular Carcinoma

  • Qin Wang
  • Sima Blank
  • M. Isabel Fiel
  • Hena Kadri
  • Wei Luan
  • Leslie Warren
  • Aileen Zhu
  • P. Alexander Deaderick
  • Umut Sarpel
  • Daniel M. Labow
  • Spiros P. Hiotis
Hepatobiliary Tumors

Abstract

Background

This study was designed to evaluate the prognostic value of three systemic inflammation markers, neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR), and prognostic nutritional index (PNI), for hepatocellular carcinoma (HCC) associated with hepatitis B (HBV).

Methods

This analysis included 234 HBV-HCC patients who underwent primary surgical resection at the Mount Sinai Medical Center between 1988 and 2013. Serum albumin and circulating neutrophil, lymphocyte, and platelet counts immediately before surgery were obtained to calculate NLR, PLR, and PNI.

Results

Patients with larger tumor size (>3 cm) had higher NLR, higher PLR, and lower PNI. Stratified analysis showed that the impact of three markers on outcome depends on the severity of liver fibrosis. High NLR, high PLR, or low PNI was associated with poor outcome only in patients without end-stage fibrosis (Ishak stage 0–5) and not in those with cirrhosis (Ishak stage 6). Multivariate analysis in Ishak stage 0–5 patients showed that only high NLR was associated with poor outcome independent of tumor size. Of the three markers, only NLR correlated with PD-L1 expression in center of tumor, but not in nonneoplastic liver.

Conclusions

The prognostic value of these three markers following surgery was only significant for HBV-HCC patients without end-stage fibrosis, and among the three markers, only NLR remained a significant prognostic indicator independent of tumor size. The correlation of NLR with intratumoral PD-L1 expression raises a hypothesis for shared pathways leading to PD-L1-mediated local tolerance within tumor and systemic inflammatory responses represented by elevated NLR in HBV-HCC.

Supplementary material

10434_2015_4598_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 15 kb)
10434_2015_4598_MOESM2_ESM.tif (16.3 mb)
Supplementary material 2 (TIFF 16641 kb)
10434_2015_4598_MOESM3_ESM.tif (16.4 mb)
Supplementary material 3 (TIFF 16761 kb)
10434_2015_4598_MOESM4_ESM.tif (15.4 mb)
Supplementary material 4 (TIFF 15768 kb)
10434_2015_4598_MOESM5_ESM.tif (15.9 mb)
Supplementary material 5 (TIFF 16287 kb)
10434_2015_4598_MOESM6_ESM.tif (16.1 mb)
Supplementary material 6 (TIFF 16482 kb)
10434_2015_4598_MOESM7_ESM.tif (16.3 mb)
Supplementary material 7 (TIFF 16695 kb)

References

  1. 1.
    Arzumanyan A, Reis HMGPV, Feitelson MA. Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nat Rev Cancer. 2013;13(2):123–35.PubMedCrossRefGoogle Scholar
  2. 2.
    Chemin I, Zoulim F. Hepatitis B virus induced hepatocellular carcinoma. Cancer Lett. 2009;286(1):52–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Wang Q, Fiel MI, Blank S, Luan W, Kadri H, Kim KW, et al. Impact of liver fibrosis on prognosis following liver resection for hepatitis B-associated hepatocellular carcinoma. Br J Cancer. 2013;11(10):352.Google Scholar
  4. 4.
    Dong H, Zhu G, Tamada K, Flies DB, van Deursen JMA, Chen L. B7-H1 determines accumulation and deletion of intrahepatic CD8+ T lymphocytes. Immunity. 2004;20(3):327–36.PubMedCrossRefGoogle Scholar
  5. 5.
    Flecken T, Schmidt N, Hild S, Gostick E, Drognitz O, Zeiser R, et al. Immunodominance and functional alterations of tumor-associated antigen-specific CD8+ T-cell responses in hepatocellular carcinoma. Hepatology. 2014;59(4):1415–26.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Willimsky G, Schmidt K, Loddenkemper C, Gellermann J, Blankenstein T. Virus-induced hepatocellular carcinomas cause antigen-specific local tolerance. J Clin Investig. 2013;123(3):1032–43.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Li K-K, Adams DH. Anti-tumor CD8+ T-cells in hepatocellular carcinoma: present but exhausted. Hepatology. 2014;59(4):1232–4.PubMedCrossRefGoogle Scholar
  8. 8.
    Mano Y, Shirabe K, Yamashita YI, Harimoto N, Tsujita E, Takeishi K, et al. Preoperative neutrophil-to-lymphocyte ratio is a predictor of survival after hepatectomy for hepatocellular carcinoma: a retrospective analysis. Ann Surg. 2013;258(2):301–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Donskov F. Immunomonitoring and prognostic relevance of neutrophils in clinical trials. Sem Cancer Biol. 2013;23(3):200–7.CrossRefGoogle Scholar
  10. 10.
    Kinoshita A, Onoda H, Imai N, Iwaku A, Oishi M, Fushiya N, et al. Comparison of the prognostic value of inflammation-based prognostic scores in patients with hepatocellular carcinoma. Br J Cancer. 2012;107(6):988–93.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Li M-x, Liu X-m, Zhang X-f, Zhang J-f, Wang W-l, Zhu Y, et al. Prognostic role of neutrophil-to-lymphocyte ratio in colorectal cancer: a systematic review and meta-analysis. Int J Cancer. 2013;134(10):2403–13.Google Scholar
  12. 12.
    Sieghart W, Pinter M, Hucke F, Graziadei I, Schöniger-Hekele M, Müller C, et al. Single determination of C-reactive protein at the time of diagnosis predicts long-term outcome of patients with hepatocellular carcinoma. Hepatology 2013;57(6):2224–34.PubMedCrossRefGoogle Scholar
  13. 13.
    Dirican A, Kucukzeybek BB, Alacacioglu A, Kucukzeybek Y, Erten C, Varol U, et al. Do the derived neutrophil to lymphocyte ratio and the neutrophil to lymphocyte ratio predict prognosis in breast cancer? Int J Clin Oncol 2014;18:18.Google Scholar
  14. 14.
    Oh BS, Jang JW, Kwon JH, You CR, Chung KW, Kay CS, et al. Prognostic value of C-reactive protein and neutrophil-to-lymphocyte ratio in patients with hepatocellular carcinoma. BMC Cancer. 2013;13(78):1471–2407.Google Scholar
  15. 15.
    Gomez D, Farid S, Malik HZ, Young AL, Toogood GJ, Lodge JPA, et al. Preoperative neutrophil-to-lymphocyte ratio as a prognostic predictor after curative resection for hepatocellular carcinoma. World J Surg. 2008;32(8):1757–62.PubMedCrossRefGoogle Scholar
  16. 16.
    Halazun KJ, Hardy MA, Rana AA, Woodland DCt, Luyten EJ, Mahadev S, et al. Negative impact of neutrophil-lymphocyte ratio on outcome after liver transplantation for hepatocellular carcinoma. Ann Surg. 2009;250(1):141–51.PubMedCrossRefGoogle Scholar
  17. 17.
    Pinato DJ, North BV, Sharma R. A novel, externally validated inflammation-based prognostic algorithm in hepatocellular carcinoma: the prognostic nutritional index (PNI). Br J Cancer. 2012;106(8):1439–45.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Lai Q, Castro Santa E, Rico Juri JM, Pinheiro RS, Lerut J. Neutrophil and platelet-to-lymphocyte ratio as new predictors of dropout and recurrence after liver transplantation for hepatocellular cancer. Transpl Int. 2014;27(1):32–41.PubMedCrossRefGoogle Scholar
  19. 19.
    Sullivan KM, Groeschl RT, Turaga KK, Tsai S, Christians KK, White SB, et al. Neutrophil-to-lymphocyte ratio as a predictor of outcomes for patients with hepatocellular carcinoma: a Western perspective. J Surg Oncol. 2014;109(2):95–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Wang Q, Fiel MI, Luan W, Blank S, Kadri H, Kim KW, et al. Impact of intrahepatic hepatitis B DNA and covalently closed circular DNA on survival after hepatectomy in HBV-associated hepatocellular carcinoma patients. Ann Surg Oncol. 2013;15:15.Google Scholar
  21. 21.
    Blank S, Wang Q, Fiel MI, Luan W, Kim K, Kadri H, et al. Assessing prognostic significance of preoperative alpha-fetoprotein in hepatitis b-associated hepatocellular carcinoma: normal is not the new normal. Ann Surg Oncol. 2014;21:986.PubMedCrossRefGoogle Scholar
  22. 22.
    Kadri HS, Blank S, Wang Q, Kim KW, Fiel MI, Luan W, et al. Outcomes following liver resection and clinical pathologic characteristics of hepatocellular carcinoma occurring in patients with chronic hepatitis B and minimally fibrotic liver. Eur J Surg Oncol. 2013;39(12):1371–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Goodman ZD. Grading and staging systems for inflammation and fibrosis in chronic liver diseases. J Hepatol. 2007;47(4):598–607.PubMedCrossRefGoogle Scholar
  24. 24.
    Lee M, Kaushansky K, Judkins S, Lottsfeldt J, Waheed A, Shadduck R. Mechanisms of tumor-induced neutrophilia: constitutive production of colony-stimulating factors and their synergistic actions. Blood. 1989;74(1):115–22.PubMedGoogle Scholar
  25. 25.
    Araki K, Kishihara F, Takahashi K, Matsumata T, Shimura T, Suehiro T, et al. Hepatocellular carcinoma producing a granulocyte colony-stimulating factor: report of a resected case with a literature review. Liver Int. 2007;27(5):716–21.PubMedCrossRefGoogle Scholar
  26. 26.
    Carr BI, Guerra V. Thrombocytosis and hepatocellular carcinoma. Dig Dis Sci. 2013;58(6):1790–6.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Kuang D-M, Zhao Q, Wu Y, Peng C, Wang J, Xu Z, et al. Peritumoral neutrophils link inflammatory response to disease progression by fostering angiogenesis in hepatocellular carcinoma. J Hepatol. 2011;54(5):948–55.PubMedCrossRefGoogle Scholar
  28. 28.
    Li Y-W, Qiu S-J, Fan J, Zhou J, Gao Q, Xiao Y-S, et al. Intratumoral neutrophils: A poor prognostic factor for hepatocellular carcinoma following resection. J Hepatol. 2011;54(3):497–505.PubMedCrossRefGoogle Scholar
  29. 29.
    Motomura T, Shirabe K, Mano Y, Muto J, Toshima T, Umemoto Y, et al. Neutrophil–lymphocyte ratio reflects hepatocellular carcinoma recurrence after liver transplantation via inflammatory microenvironment. J Hepatol. 2013;58(1):58–64.PubMedCrossRefGoogle Scholar
  30. 30.
    Bankey PE, Banerjee S, Zucchiatti A, De M, Sleem RW, Lin C-FL, et al. Cytokine induced expression of programmed death ligands in human neutrophils. Immunol Lett. 2010;129(2):100–7.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    McNab FW, Berry MPR, Graham CM, Bloch SAA, Oni T, Wilkinson KA, et al. Programmed death ligand 1 is over-expressed by neutrophils in the blood of patients with active tuberculosis. Eur J Immunol. 2011;41(7):1941–7.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Gao Q, Wang X-Y, Qiu S-J, Yamato I, Sho M, Nakajima Y, et al. Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clinical Cancer Res. 2009;15(3):971–9.CrossRefGoogle Scholar
  33. 33.
    Wu K, Kryczek I, Chen L, Zou W, Welling TH. Kupffer cell suppression of CD8+ T cells in human hepatocellular carcinoma is mediated by B7-H1/programmed death-1 interactions. Cancer Res. 2009;69(20):8067–75.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Kuang D-M, Zhao Q, Peng C, Xu J, Zhang J-P, Wu C, et al. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J Exp Med. 2009;206(6):1327–37.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Wu S, Yang C, Guo S, Fei L, Luo N, Fu X, et al. Stimulation of B7-H1 in hepatocarcinoma cells by hepatitis B virus X antigen. Immunol Invest. 2010;39(7):754–69.PubMedCrossRefGoogle Scholar

Copyright information

© Society of Surgical Oncology 2015

Authors and Affiliations

  • Qin Wang
    • 1
  • Sima Blank
    • 1
  • M. Isabel Fiel
    • 2
  • Hena Kadri
    • 1
  • Wei Luan
    • 1
  • Leslie Warren
    • 1
  • Aileen Zhu
    • 1
  • P. Alexander Deaderick
    • 1
  • Umut Sarpel
    • 1
  • Daniel M. Labow
    • 1
  • Spiros P. Hiotis
    • 1
  1. 1.Department of SurgeryThe Icahn School of Medicine at Mount SinaiNew YorkUSA
  2. 2.Department of PathologyThe Icahn School of Medicine at Mount SinaiNew YorkUSA

Personalised recommendations