Skip to main content

Advertisement

Log in

Suppression of SAMSN1 Expression is Associated with the Malignant Phenotype of Hepatocellular Carcinoma

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Identification of molecular markers for sensitive detection of hepatocellular carcinoma (HCC) is required to achieve efficacious personalized therapy.

Methods

We focused here on SAM domain, SH3 domain, and nuclear localization signals 1 (SAMSN1) and investigated expression and methylation status of SAMSN1 in HCC cell lines and 144 pairs of surgical specimens.

Results

SAMSN1 was expressed at significantly lower levels in tumor tissue compared with the corresponding noncancerous tissues of patients with HCC. Analysis of HCC cell lines revealed that hypermethylation of the SAMSN1 promoter correlated with decreased expression of SAMSN1 mRNA. Furthermore, treating cells with a DNA-demethylating drug increased SAMSN1 transcription. The levels of SAMSN1 mRNA in noncancerous liver were not affected by background liver inflammation or fibrosis. Moreover, the levels of SAMSN1 mRNA in HCC tissues inversely correlated with tumor size and preoperative levels of proteins induced by vitamin K absence. The clinical significance of SAMSN1 was further indicated by the correlation between its decreased expression in patients with HCC and their shorter overall and recurrence-free survival as well as recurrence following initial resection. Moreover, multivariate analysis identified SAMSN1 as an independent prognostic factor of HCC progression. The expression pattern of SAMSN1 correlated significantly with that of SAMSN1 mRNA, making it possible to use PCR techniques to readily quantitate SAMSN1 expression in tumors.

Conclusions

Our findings indicate that inhibition of SAMSN1 transcription through DNA hypermethylation may influence the progression of HCC and thus represent a novel biomarker of the phenotype of HCC cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. GLOBOCAN 2012. Estimated Cancer incidence, mortality and prevalence worldwide in 2012, stomach cancer. Available at http://globocan.iarc.fr.

  2. Flores A, Marrero JA. Emerging trends in hepatocellular carcinoma: focus on diagnosis and therapeutics. Clin Med Insights Oncol. 2014;8:71–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  3. Vivarelli M, Montalti R, Risaliti A. Multimodal treatment of hepatocellular carcinoma on cirrhosis: an update. World J Gastroenterol. 2013;19:7316–26.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kanda M, Nomoto S, Nishikawa Y, Sugimoto H, Kanazumi N, Takeda S, Nakao A. Correlations of the expression of vascular endothelial growth factor B and its isoforms in hepatocellular carcinoma with clinico-pathological parameters. J Surg Oncol. 2008;98:190–6.

    Article  PubMed  CAS  Google Scholar 

  5. Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet. 2003;362:1907–17.

    Article  PubMed  Google Scholar 

  6. Ramakrishna G, Rastogi A, Trehanpati N, Sen B, Khosla R, Sarin SK. From cirrhosis to hepatocellular carcinoma: new molecular insights on inflammation and cellular senescence. Liver Cancer. 2013;2:367–83.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Yang JD, Roberts LR. Hepatocellular carcinoma: A global view. Nat Rev Gastroenterol Hepatol. 2010;7:448–58.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kanda M, Nomoto S, Oya H, et al. Downregulation of DENND2D by promoter hypermethylation is associated with early recurrence of hepatocellular carcinoma. Int J Oncol. 2014;44:44–52.

    PubMed  CAS  Google Scholar 

  9. Giannelli G, Rani B, Dituri F, Cao Y, Palasciano G. Moving towards personalised therapy in patients with hepatocellular carcinoma: the role of the microenvironment. Gut. 2014;63:1668–76.

    Article  PubMed  CAS  Google Scholar 

  10. Galuppo R, Ramaiah D, Ponte OM, Gedaly R. Molecular therapies in hepatocellular carcinoma: what can we target? Dig Dis Sci. 2014;59:1688–97.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–90.

    Article  PubMed  CAS  Google Scholar 

  12. Cheng AL, Kang YK, Chen Z, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2009;10:25–34.

    Article  PubMed  CAS  Google Scholar 

  13. Bruix J, Gores GJ, Mazzaferro V. Hepatocellular carcinoma: clinical frontiers and perspectives. Gut. 2014;63:844–55.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Zhao YJ, Ju Q, Li GC. Tumor markers for hepatocellular carcinoma. Mol Clin Oncol. 2013;1:593–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  15. Kanda M, Nomoto S, Okamura Y, et al. Detection of metallothionein 1G as a methylated tumor suppressor gene in human hepatocellular carcinoma using a novel method of double combination array analysis. Int J Oncol. 2009;35:477–83.

    Article  PubMed  CAS  Google Scholar 

  16. Minguez B, Lachenmayer A. Diagnostic and prognostic molecular markers in hepatocellular carcinoma. Dis Markers. 2011;31:181–90.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Miki D, Ochi H, Hayes CN, Aikata H, Chayama K. Hepatocellular carcinoma: towards personalized medicine. Cancer Sci. 2012;103:846–50.

    Article  PubMed  CAS  Google Scholar 

  18. Overdevest JB, Theodorescu D, Lee JK. Utilizing the molecular gateway: the path to personalized cancer management. Clin Chem. 2009;55:684–97.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Zhu YX, Benn S, Li ZH, et al. The SH3-SAM adaptor HACS1 is up-regulated in B cell activation signaling cascades. J Exp Med. 2004;200:737–47.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Noll JE, Hewett DR, Williams SA, Vandyke K, Kok C, To LB, Zannettino AC. SAMSN1 is a tumor suppressor gene in multiple myeloma. Neoplasia. 2014;16:572–85.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Wang D, Stewart AK, Zhuang L, et al. Enhanced adaptive immunity in mice lacking the immunoinhibitory adaptor Hacs1. FASEB J. 2010;24:947–56.

    Article  PubMed  CAS  Google Scholar 

  22. Yan Y, Zhang L, Xu T, et al. SAMSN1 is highly expressed and associated with a poor survival in glioblastoma multiforme. PLoS One. 2013;8:e81905.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yamada H, Yanagisawa K, Tokumaru S, et al. Detailed characterization of a homozygously deleted region corresponding to a candidate tumor suppressor locus at 21q11-21 in human lung cancer. Genes Chromosomes Cancer. 2008;47:810–8.

    Article  PubMed  CAS  Google Scholar 

  24. Kanda M, Nomoto S, Okamura Y, et al. Promoter hypermethylation of fibulin 1 gene is associated with tumor progression in hepatocellular carcinoma. Mol Carcinog. 2011;50:571–9.

    Article  PubMed  CAS  Google Scholar 

  25. Nomoto S, Kanda M, Okamura Y, et al. Epidermal growth factor-containing fibulin-like extracellular matrix protein 1, EFEMP1, a novel tumor-suppressor gene detected in hepatocellular carcinoma using double combination array analysis. Ann Surg Oncol. 2010;17:923–32.

    Article  PubMed  Google Scholar 

  26. Kanda M, Sugimoto H, Nomoto S, et al. Bcell translocation gene 1 serves as a novel prognostic indicator of hepatocellular carcinoma. Int J Oncol. 2015;46:641–8.

    PubMed  CAS  Google Scholar 

  27. Takami H, Kanda M, Oya H, et al. Evaluation of MAGE-D4 expression in hepatocellular carcinoma in Japanese patients. J Surg Oncol. 2013;108:557–62.

    Article  PubMed  CAS  Google Scholar 

  28. Shimizu D, Kanda M, Nomoto S, et al. Identification of intragenic methylation in the TUSC1 gene as a novel prognostic marker of hepatocellular carcinoma. Oncol Rep. 2014;31:1305–13.

    PubMed  CAS  Google Scholar 

  29. Kanda M, Shimizu D, Nomoto S, et al. Clinical significance of expression and epigenetic profiling of TUSC1 in gastric cancer. J Surg Oncol. 2014;110:136–44.

    Article  PubMed  CAS  Google Scholar 

  30. Oya H, Kanda M, Sugimoto H, et al. Dihydropyrimidinase-like 3 is a putative hepatocellular carcinoma tumor suppressor. J Gastroenterol. 2014. doi:10.1007/s00535-014-0993-4.

    Google Scholar 

  31. Kanda M, Nomoto S, Oya H, et al. Decreased expression of prenyl diphosphate synthase subunit 2 correlates with reduced survival of patients with gastric cancer. J Exp Clin Cancer Res. 2014;33:88.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hibino S, Kanda M, Oya H, et al. Reduced expression of DENND2D through promoter hypermethylation is an adverse prognostic factor in squamous cell carcinoma of the esophagus. Oncol Rep. 2014;31:693–700.

    PubMed  CAS  Google Scholar 

  33. Oya H, Kanda M, Takami H, et al. Overexpression of melanoma-associated antigen D4 is an independent prognostic factor in squamous cell carcinoma of the esophagus. Dis Esophagus. 2015;28:188–95.

    Article  PubMed  CAS  Google Scholar 

  34. Kanda M, Nomoto S, Oya H, et al. Dihydropyrimidinase-like 3 facilitates malignant behavior of gastric cancer. J Exp Clin Cancer Res. 2014;33:66.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kanda M, Shimizu D, Nomoto S, et al. Prognostic impact of expression and methylation status of DENN/MADD domain-containing protein 2D in gastric cancer. Gastric Cancer. 2014. doi:10.1007/s10120-014-0372-0.

    PubMed Central  Google Scholar 

  36. Claudio JO, Zhu YX, Benn SJ, et al. HACS1 encodes a novel SH3-SAM adaptor protein differentially expressed in normal and malignant hematopoietic cells. Oncogene. 2001;20:5373–7.

    Article  PubMed  CAS  Google Scholar 

  37. Lang PA, Recher M, Haussinger D, Lang KS. Genes determining the course of virus persistence in the liver: lessons from murine infection with lymphocytic choriomeningitis virus. Cell Physiol Biochem. 2010;26:263–72.

    Article  PubMed  CAS  Google Scholar 

  38. Stagg J, Galipeau J. Mechanisms of immune modulation by mesenchymal stromal cells and clinical translation. Curr Mol Med. 2013;13:856–67.

    Article  PubMed  CAS  Google Scholar 

  39. Vainer GW, Pikarsky E, Ben-Neriah Y. Contradictory functions of NF-kappaB in liver physiology and cancer. Cancer Lett. 2008;267:182–8.

    Article  PubMed  CAS  Google Scholar 

  40. Tokunaga F, Iwai K. Linear ubiquitination: a novel NF-kappaB regulatory mechanism for inflammatory and immune responses by the LUBAC ubiquitin ligase complex. Endocr J. 2012;59:641–52.

    Article  PubMed  CAS  Google Scholar 

  41. Ringelhan M, Reisinger F, Yuan D, Weber A, Heikenwalder M. Modeling human liver cancer heterogeneity: virally induced transgenic models and mouse genetic models of chronic liver inflammation. Curr Protoc Pharmacol. 2014;67:14.31.11–17.

    Google Scholar 

  42. El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132:2557–76.

    Article  PubMed  CAS  Google Scholar 

  43. Herath NI, Leggett BA, MacDonald GA. Review of genetic and epigenetic alterations in hepatocarcinogenesis. J Gastroenterol Hepatol. 2006;21:15–21.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuro Kanda MD, PhD.

Additional information

Satoshi Sueoka and Mitsuro Kanda have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10434_2015_4524_MOESM1_ESM.tif

Supplementary material 1 RT-PCR analysis of the expression SAMSN1 expression in clinical specimens. (a) There were no significant differences in SAMSN1 mRNA levels among noncancerous tissues categorized by background uninvolved liver status. (b) SAMSN1 mRNA was expressed at lower levels in HCC tissues compared with those of the corresponding noncancerous tissues. (EPS 662 kb)

10434_2015_4524_MOESM2_ESM.tif

Supplementary material 2 (a) Correlation of SAMSN1 mRNA expression levels in HCC tissues with tumor size and (b) PIVKA II levels. (EPS 545 kb)

10434_2015_4524_MOESM3_ESM.tif

Supplementary material 3 SAMSN1 mRNA levels in HCC tissues categorized by the recurrence pattern at the initial (a) and second (b) recurrence. (EPS 17225 kb)

Supplementary material 4 (DOC 41 kb)

Supplementary material 5 (DOC 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sueoka, S., Kanda, M., Sugimoto, H. et al. Suppression of SAMSN1 Expression is Associated with the Malignant Phenotype of Hepatocellular Carcinoma. Ann Surg Oncol 22 (Suppl 3), 1453–1460 (2015). https://doi.org/10.1245/s10434-015-4524-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-015-4524-1

Keywords

Navigation