Annals of Surgical Oncology

, Volume 23, Supplement 2, pp 197–205 | Cite as

Molecular Pathogenesis and Targeted Therapy of Pancreatic Cancer

Pancreatic Tumors

Abstract

Accumulation of multiple genetic and/or epigenetic abnormalities is required for generation and progression of cancers, and the survival of cancer cells might depend on addiction to these abnormalities. Because disruption of such dependency on the abnormal molecules should cause the cancer cell death, so-called oncogene addiction is the rationale for molecular targeted therapy. Pancreatic cancer, especially pancreatic ductal adenocarcinoma, is one of the most lethal malignancies in humans, and remains a challenging problem in targeted therapy compared to other malignancies such as pancreatic neuroendocrine tumor. This review summarizes the molecular pathogenesis of pancreatic cancer on the basis of the recent studies of driver mutations including chromatin remodeling factors, and promising concepts “cancer stemness” and “stromal niche” for the strategy of novel targeted therapy.

References

  1. 1.
    Vincent A, Herman J, Schulick R, Hruban RH, Goggins M. Pancreatic cancer. Lancet. 2011;378(9791):607–20.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kong B, Michalski CW, Erkan M, Friess H, Kleeff J. From tissue turnover to the cell of origin for pancreatic cancer. Nat Rev Gastroenterol Hepatol. 2011;8:467–72.CrossRefPubMedGoogle Scholar
  3. 3.
    Weinstein IB, Joe AK. Mechanisms of disease: oncogene addiction—a rationale for molecular targeting in cancer therapy. Nat Clin Pract Oncol. 2006;3:448–57.CrossRefPubMedGoogle Scholar
  4. 4.
    Jones S, Zhang X, Parsons DW, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 2008;321(5897):1801–6.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Shain AH, Giacomini CP, Matsukuma K, et al. Convergent structural alterations define SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeler as a central tumor suppressive complex in pancreatic cancer. Proc Natl Acad Sci U S A. 2012;109:E252–9.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Biankin AV, Waddell N, Kassahn KS, et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature. 2012;491(7424):399–405.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    von Figura G, Fukuda A, Roy N, et al. The chromatin regulator Brg1 suppresses formation of intraductal papillary mucinous neoplasm and pancreatic ductal adenocarcinoma. Nat Cell Biol. 2014;16:255–67.CrossRefGoogle Scholar
  8. 8.
    Tanaka S, Arii S. Molecular targeted therapy in hepatocellular carcinoma. Semin Oncol. 2012;39:486–92.CrossRefPubMedGoogle Scholar
  9. 9.
    Karapetis CS, Khambata-Ford S, Jonker DJ, et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med. 2008;359:1757–65.CrossRefPubMedGoogle Scholar
  10. 10.
    Philip PA, Benedetti J, Corless CL, et al. Phase III study comparing gemcitabine plus cetuximab versus gemcitabine in patients with advanced pancreatic adenocarcinoma: Southwest Oncology Group–directed Intergroup Trial S0205. J Clin Oncol. 2010;28:3605–10.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Moore MJ, Goldstein D, Hamm J, et al; National Cancer Institute of Canada Clinical Trials Group. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol. 2007;25:1960–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Van Cutsem E, van de Velde H, Karasek P, et al. Phase III trial of gemcitabine plus tipifarnib compared with gemcitabine plus placebo in advanced pancreatic cancer. J Clin Oncol. 2004;22:1430–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Gonçalves A, Gilabert M, François E, et al. BAYPAN study: a double-blind phase III randomized trial comparing gemcitabine plus sorafenib and gemcitabine plus placebo in patients with advanced pancreatic cancer. Ann Oncol. 2012;23:2799–805.CrossRefPubMedGoogle Scholar
  14. 14.
    Heidorn SJ, Milagre C, Whittaker S, et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell. 2010;140:209–21.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ardito CM, Grüner BM, Takeuchi KK, et al. EGF receptor is required for KRAS-induced pancreatic tumorigenesis. Cancer Cell. 2012;22:304–17.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Navas C, Hernández-Porras I, Schuhmacher AJ, Sibilia M, Guerra C, Barbacid M. EGF receptor signaling is essential for k-ras oncogene–driven pancreatic ductal adenocarcinoma. Cancer Cell. 2012;22:318–30.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Tanaka S, Pero SC, Taguchi K, et al. Specific peptide ligand for Grb7 signal transduction protein and pancreatic cancer metastasis. J Natl Cancer Inst. 2006;98:491–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Wolpin BM, Hezel AF, Abrams T, et al. Oral mTOR inhibitor everolimus in patients with gemcitabine-refractory metastatic pancreatic cancer. J Clin Oncol. 2009;27:193–8.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ryan DP, O’Neil BH, Supko JG, et al. A phase I study of bortezomib plus irinotecan in patients with advanced solid tumors. Cancer. 2006;107:2688–97.CrossRefPubMedGoogle Scholar
  20. 20.
    Wang H, Cao Q, Dudek AZ. Phase II study of panobinostat and bortezomib in patients with pancreatic cancer progressing on gemcitabine-based therapy. Anticancer Res. 2012;32:1027–31.PubMedGoogle Scholar
  21. 21.
    Li C, Heidt DG, Dalerba P, et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67:1030–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Li C, Wu JJ, Hynes M, et al. c-Met is a marker of pancreatic cancer stem cells and therapeutic target. Gastroenterology. 2011; 141:2218–27.CrossRefPubMedGoogle Scholar
  23. 23.
    Hermann PC, Huber SL, Herrler T, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007;1:313–23.CrossRefPubMedGoogle Scholar
  24. 24.
    Rasheed ZA, Yang J, Wang Q, et al. Prognostic significance of tumorigenic cells with mesenchymal features in pancreatic adenocarcinoma. J Natl Cancer Inst. 2010;102:340–51.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Muramatsu S, Tanaka S, Mogushi K, et al. Visualization of stem cell features in human hepatocellular carcinoma reveals in vivo significance of tumor–host interaction and clinical course. Hepatology. 2013;58:218–28.CrossRefPubMedGoogle Scholar
  26. 26.
    Adikrisna R, Tanaka S, Muramatsu S, et al. Identification of pancreatic cancer stem cells and selective toxicity of chemotherapeutic agents. Gastroenterology. 2012;143:234–45.CrossRefPubMedGoogle Scholar
  27. 27.
    Tanaka S, Akiyoshi T, Mori M, Wands JR, Sugimachi K. A novel frizzled gene identified in human esophageal carcinoma mediates APC/beta-catenin signals. Proc Natl Acad Sci U S A. 1998;95:10164–9.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Tanaka Y, Kato K, Notohara K, et al. Frequent beta-catenin mutation and cytoplasmic/nuclear accumulation in pancreatic solid-pseudopapillary neoplasm. Cancer Res. 2001;61:8401–4.PubMedGoogle Scholar
  29. 29.
    Liu J, Pan S, Hsieh MH, et al. Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974. Proc Natl Acad Sci U S A. 2013;110:20224–9.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Gurney A, Axelrod F, Bond CJ, et al. Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proc Natl Acad Sci U S A. 2012;109:11717–22.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Olive KP, Jacobetz MA, Davidson CJ, et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science. 2009;324(5933):1457–61.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Tian H, Callahan CA, DuPree KJ, et al. Hedgehog signaling is restricted to the stromal compartment during pancreatic carcinogenesis. Proc Natl Acad Sci U S A. 2009;106:4254–9.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Garber K. Stromal depletion goes on trial in pancreatic cancer. J Natl Cancer Inst. 2010;102:448–50.CrossRefPubMedGoogle Scholar
  34. 34.
    Beatty GL, Chiorean EG, Fishman MP, et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science. 2011;331(6024):1612–6.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Von Hoff DD, Ramanathan RK, Borad MJ, et al. Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. J Clin Oncol. 2011;29:4548–54.CrossRefGoogle Scholar
  36. 36.
    Von Hoff DD, Ervin T, Arena FP, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369:1691–703.CrossRefGoogle Scholar
  37. 37.
    Özdemir BC, Pentcheva-Hoang T, Carstens JL, et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell. 2014;25:719–34.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Rhim AD, Oberstein PE, Thomas DH, et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell. 2014;25:735–47.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Zhang J, Francois R, Iyer R, Seshadri M, Zajac-Kaye M, Hochwald SN. Current understanding of the molecular biology of pancreatic neuroendocrine tumors. J Natl Cancer Inst. 2013;105:1005–17.CrossRefPubMedGoogle Scholar
  40. 40.
    Raymond E, Dahan L, Raoul JL, et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N Engl J Med. 2011;364:501–13.CrossRefPubMedGoogle Scholar
  41. 41.
    Jiao Y, Shi C, Edil BH, et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science. 2011;331(6021):1199–203.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Yao JC, Shah MH, Ito T, et al; RAD001 in Advanced Neuroendocrine Tumors, Third Trial (RADIANT-3) Study Group. Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med. 2011;364:514–23.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Yachida S, Vakiani E, White CM, et al. Small cell and large cell neuroendocrine carcinomas of the pancreas are genetically similar and distinct from well-differentiated pancreatic neuroendocrine tumors. Am J Surg Pathol. 2012;36:173–84.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Heaphy CM, de Wilde RF, Jiao Y, et al. Altered telomeres in tumors with ATRX and DAXX mutations. Science. 2011;333(6041):425.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Marinoni I, Kurrer AS, Vassella E, et al. Loss of DAXX and ATRX are associated with chromosome instability and reduced survival of patients with pancreatic neuroendocrine tumors. Gastroenterology. 2014;146:453–60.CrossRefPubMedGoogle Scholar
  46. 46.
    Romero OA, Torres-Diz M, Pros E, et al. MAX inactivation in small cell lung cancer disrupts MYC-SWI/SNF programs and is synthetic lethal with BRG1. Cancer Discov. 2014;4:292–303.CrossRefPubMedGoogle Scholar

Copyright information

© Society of Surgical Oncology 2015

Authors and Affiliations

  1. 1.Department of Molecular OncologyTokyo Medical and Dental UniversityTokyoJapan

Personalised recommendations