Advertisement

Annals of Surgical Oncology

, Volume 22, Issue 4, pp 1301–1307 | Cite as

Using Dynamic 99mTc-GSA SPECT/CT Fusion Images for Hepatectomy Planning and Postoperative Liver Failure Prediction

  • Yilei Mao
  • Shunda Du
  • Jiantao Ba
  • Fang Li
  • Huayu Yang
  • Xin Lu
  • Xinting Sang
  • Shaohua Li
  • Lu Che
  • Junxiang Tong
  • Yiyao Xu
  • Haifeng Xu
  • Haitao Zhao
  • Tianyi Chi
  • Fang Liu
  • Yanrong Du
  • Xianzhong Zhang
  • Xuebin Wang
  • Jiahong Dong
  • Shouxian Zhong
  • Jiefu Huang
  • Yongming Yu
  • Jiping Wang
Hepatobiliary Tumors

Abstract

Background

Available tools in liver surgery planning rely on the future remnant liver (FRL) volume. Inappropriate decision might be made since the same FRL volume might represent different liver functions depending on the severity of underlying liver damage. This study developed an alternative system to estimate FRL function and to predict the risk of postoperative liver failure.

Methods

Current study recruited 71 prehepatectomy patients and 71 healthy volunteers. A technetium-99-labelled asialoglycoproteins was given to participants and SPECT was used to capture the intensity of the signal, represented by uptake index (UI). The agreement between preoperative UI values, liver function tests, and Child scores were evaluated. Linear regression was used to evaluate the agreement between predicted UI for FRL and postoperative UI values. Area under the receiver operating characteristic (AUC) curve was used to evaluate the discriminative performance of UI in differentiating patient with high risk of liver failure.

Results

Preoperative UIs are highly correlated with Child score (P < 0.0001), especially to identify patients with ascites and elevated bilirubin. The predicted UIs were in close agreement with the actual postoperative UI values (r = 0.95 P < 0.001). The AUC analysis indicated that UI values had a high accuracy in predicting the risk of liver failure (AUC = 0.95, P < 0.0001). The best cut-off point was 0.9 and the corresponding sensitivity was 100 % and specificity was 92 %.

Conclusions

The new methodology reliably estimates FRL function and predicts the risk of liver failure. It provides a visual aid for liver surgeon in surgery planning and risk assessment.

Keywords

Liver Failure Receiver Operating Characteristic Analysis Future Remnant Liver Peking Union Medical College Postoperative Liver Failure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

The authors thank EDDA Technique Corp, Ltd. for their collaboration and assistance in the computerization and image development of our system. This work was supported by the China Medical Board of New York (CMB) (06-837 and 11-045), National Natural Science Foundation of China (30901453 and 81201566) and National Key Technology Research and Development Program of China (BAI06B01).

Disclosure

All authors declared: no financial relationships with any organizations that might have an interest in the submitted work; no other relationships or activities have influenced the submitted work.

Supplementary material

Supplementary material 1 (MP4 7685 kb)

10434_2014_4117_MOESM2_ESM.jpg (272 kb)
Supplementary material 2 (JPEG 272 kb)
10434_2014_4117_MOESM3_ESM.jpg (383 kb)
Supplementary material 3 (JPEG 382 kb)

References

  1. 1.
    Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108.CrossRefPubMedGoogle Scholar
  2. 2.
    Byam J, Millis M. Liver transplantation for hepatocellular carcinoma. Hepatobiliary Surg Nutr. 2013;2:22–30.PubMedCentralPubMedGoogle Scholar
  3. 3.
    Chen JG, Zhang SW. Liver cancer epidemic in China: past, present and future. Semin Cancer Biol. 2011;21:59–69.CrossRefPubMedGoogle Scholar
  4. 4.
    O’Connor S, Ward J, M Watson, B Momin, LC Richardson. Hepatocellular carcinoma—United States, 2001–2006. MMWR Morbidity and Mortality Weekly Report. 2010; 59:4.Google Scholar
  5. 5.
    Ascha MS, Hanouneh IA, Lopez R, Tamimi TA, Feldstein AF, Zein NN. The incidence and risk factors of hepatocellular carcinoma in patients with nonalcoholic steatohepatitis. Hepatology. 2010;51:1972–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Hassan MM, Curley SA, Li D, Kaseb A, Davila M, Abdalla EK, Javle M, Moghazy DM, Lozano RD, Abbruzzese JL, Vauthey JN. Association of diabetes duration and diabetes treatment with the risk of hepatocellular carcinoma. Cancer. 2010;116:1938–46.CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Llovet JM. Updated treatment approach to hepatocellular carcinoma. J Gastroenterol. 2005;40:225–35.CrossRefPubMedGoogle Scholar
  8. 8.
    Kohn GP, Nikfarjam M. The effect of surgical volume and the provision of residency and fellowship training on complications of major hepatic resection. J Gastrointest Surg. 2010;14:1981–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Sato M, Tateishi R, Yasunaga H, Horiguchi H, Yoshida H, Matsuda S, Koike K. Mortality and morbidity of hepatectomy, radiofrequency ablation, and embolization for hepatocellular carcinoma: a national survey of 54,145 patients. J Gastroenterol. 2012;47:1125–33.CrossRefPubMedGoogle Scholar
  10. 10.
    10.Imamura H, Seyama Y, Kokudo N, Maema A, Sugawara Y, Sano K, Takayama T, Makuuchi M. One thousand fifty-six hepatectomies without mortality in 8 years. Arch Surg. 2003;138:1198–206; discussion 1206CrossRefPubMedGoogle Scholar
  11. 11.
    Schneider PD. Preoperative assessment of liver function. Surg Clin North Am. 2004;84:355–73.CrossRefPubMedGoogle Scholar
  12. 12.
    Hoekstra LT, de Graaf W, Nibourg GA, Heger M, Bennink RJ, Stieger B, van Gulik TM. Physiological and biochemical basis of clinical liver function tests: a review. Ann Surg. 2013;257:27–36.CrossRefPubMedGoogle Scholar
  13. 13.
    Sawamura T, Nakada H, Hazama H, Shiozaki Y, Sameshima Y, Tashiro Y. Hyperasialoglycoproteinemia in patients with chronic liver diseases and/or liver cell carcinoma. Asialoglycoprotein receptor in cirrhosis and liver cell carcinoma. Gastroenterology. 1984;87:1217–21.PubMedGoogle Scholar
  14. 14.
    Akaki S, Mitsumori A, Kanazawa S, Togami I, Takeda Y, Joja I, Hiraki Y. Technetium-99m-DTPA-galactosyl human serum albumin liver scintigraphy evaluation of regional CT/MRI attenuation/signal intensity differences. J Nucl Med. 1998;39:529–32.PubMedGoogle Scholar
  15. 15.
    Miki K, Kubota K, Inoue Y, Vera DR, Makuuchi M. Receptor measurements via Tc-GSA kinetic modeling are proportional to functional hepatocellular mass. J Nucl Med. 2001;42:733–7.PubMedGoogle Scholar
  16. 16.
    Virgolini I, Muller C, Klepetko W, Angelberger P, Bergmann H, O’Grady J, Sinzinger H. Decreased hepatic function in patients with hepatoma or liver metastasis monitored by a hepatocyte specific galactosylated radioligand. Br J Cancer. 1990;61:937–41.CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Du S, Mao Y, Tong J, Li F, Che L, Li S, Yang H, Ba J, Hu N, Xing H, Lu X, Sang X, Zhang X, Wang X, Zhong S. A novel liver function evaluation system using radiopharmacokinetic modeling of technetium-99m-DTPA-galactosyl human serum albumin. Nucl Med Commun. 2013;34:893–9.PubMedGoogle Scholar
  18. 18.
  19. 19.
    van den Broek MA, Olde Damink SW, Dejong CH, Lang H, Malago M, Jalan R, Saner FH. Liver failure after partial hepatic resection: definition, pathophysiology, risk factors and treatment. Liver Int. 2008;28:767–80.CrossRefGoogle Scholar
  20. 20.
    Imamura H, Sano K, Sugawara Y, Kokudo N, Makuuchi M. Assessment of hepatic reserve for indication of hepatic resection: decision tree incorporating indocyanine green test. J Hepatobiliary Pancreat Surg. 2005;12:16–22.CrossRefPubMedGoogle Scholar
  21. 21.
    Lee CF, Yu MC, Kuo LM, Chan KM, Jan YY, Chen MF, Lee WC. Using indocyanine green test to avoid post-hepatectomy liver dysfunction. Chang Gung Med J. 2007;30:333–8.PubMedGoogle Scholar
  22. 22.
    Kishi Y, Kopetz S, Chun YS, Palavecino M, Abdalla EK, Vauthey JN. Blood neutrophil-to-lymphocyte ratio predicts survival in patients with colorectal liver metastases treated with systemic chemotherapy. Ann Surg Oncol. 2009;16:614–22.CrossRefPubMedGoogle Scholar
  23. 23.
    Ribero D, Abdalla EK, Madoff DC, Donadon M, Loyer EM, Vauthey JN. Portal vein embolization before major hepatectomy and its effects on regeneration, resectability and outcome. Br J Surg. 2007;94:1386–94.CrossRefPubMedGoogle Scholar
  24. 24.
    Shirabe K, Shimada M, Gion T, Hasegawa H, Takenaka K, Utsunomiya T, Sugimachi K. Postoperative liver failure after major hepatic resection for hepatocellular carcinoma in the modern era with special reference to remnant liver volume. J Am Coll Surg. 1999;188:304–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Vauthey JN, Chaoui A, Do KA, Bilimoria MM, Fenstermacher MJ, Charnsangavej C, Hicks M, Alsfasser G, Lauwers G, Hawkins IF, Caridi J. Standardized measurement of the future liver remnant prior to extended liver resection: methodology and clinical associations. Surgery. 2000;127:512–9.CrossRefPubMedGoogle Scholar
  26. 26.
    de Graaf W, Bennink RJ, Vetelainen R, van Gulik TM. Nuclear imaging techniques for the assessment of hepatic function in liver surgery and transplantation. J Nucl Med. 2010;51:742–52.CrossRefPubMedGoogle Scholar
  27. 27.
    Ha-Kawa SK, Tanaka Y. A quantitative model of technetium-99m-DTPA-galactosyl-HSA for the assessment of hepatic blood flow and hepatic binding receptor. J Nucl Med. 1991;32:2233–40.PubMedGoogle Scholar
  28. 28.
    Iimuro Y, Kashiwagi T, Yamanaka J, Hirano T, Saito S, Sugimoto T, Watanabe S, Kuroda N, Okada T, Asano Y, Uyama N, Fujimoto J. Preoperative estimation of asialoglycoprotein receptor expression in the remnant liver from CT/99mTc-GSA SPECT fusion images correlates well with postoperative liver function parameters. J Hepatobiliary Pancreat Sci. 2010;17:673–81.CrossRefPubMedGoogle Scholar
  29. 29.
    Sasaki N, Shiomi S, Iwata Y, Nishiguchi S, Kuroki T, Kawabe J, Ochi H. Clinical usefulness of scintigraphy with 99mTc-galactosyl-human serum albumin for prognosis of cirrhosis of the liver. J Nucl Med. 1999;40:1652–6.PubMedGoogle Scholar

Copyright information

© Society of Surgical Oncology 2014

Authors and Affiliations

  • Yilei Mao
    • 1
  • Shunda Du
    • 1
  • Jiantao Ba
    • 2
  • Fang Li
    • 2
  • Huayu Yang
    • 1
  • Xin Lu
    • 1
  • Xinting Sang
    • 1
  • Shaohua Li
    • 1
  • Lu Che
    • 1
  • Junxiang Tong
    • 3
  • Yiyao Xu
    • 1
  • Haifeng Xu
    • 1
  • Haitao Zhao
    • 1
  • Tianyi Chi
    • 1
  • Fang Liu
    • 1
  • Yanrong Du
    • 2
  • Xianzhong Zhang
    • 4
  • Xuebin Wang
    • 4
  • Jiahong Dong
    • 3
  • Shouxian Zhong
    • 1
  • Jiefu Huang
    • 1
  • Yongming Yu
    • 5
  • Jiping Wang
    • 6
    • 7
  1. 1.Department of Liver Surgery, Peking Union Medical College (PUMC) HospitalChinese Academy of Medical Sciences and PUMCBeijingChina
  2. 2.Department of Nuclear Medicine, Peking Union Medical College (PUMC) HospitalChinese Academy of Medical Sciences and PUMCBeijingChina
  3. 3.Department of Hepatobiliary SurgeryChinese PLA General HospitalBeijingChina
  4. 4.Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of ChemistryBeijing Normal UniversityBeijingChina
  5. 5.Department of SurgeryMassachusetts General HospitalBostonUSA
  6. 6.Department of SurgeryHarvard Medical SchoolBostonUSA
  7. 7.Division of Surgical OncologyBrigham and Women’s HospitalBostonUSA

Personalised recommendations