Annals of Surgical Oncology

, Volume 21, Supplement 4, pp 672–679 | Cite as

Silencing of UCHL1 by CpG Promoter Hyper-methylation is Associated with Metastatic Gastroenteropancreatic Well-Differentiated Neuroendocrine (Carcinoid) Tumors

  • David A. Kleiman
  • Toni Beninato
  • Samuel Sultan
  • Michael J. P. Crowley
  • Brendan Finnerty
  • Ritu Kumar
  • Nicole C. Panarelli
  • Yi-Fang Liu
  • Michael D. Lieberman
  • Marco Seandel
  • Todd Evans
  • Olivier Elemento
  • Rasa Zarnegar
  • Thomas J. FaheyIII
Translational Research and Biomarkers

Abstract

Background

Well-differentiated gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are rare tumors with varying metastatic potential. The underlying molecular basis for metastasis by GEP-NETs remains undefined.

Methods

Quantitative PCR and immunohistochemistry (IHC) staining for ubiquitin carboxyl-terminal esterase L1 (UCHL1) gene and protein expression was performed on a group of localized and metastatic well-differentiated GEP-NET samples acquired from a prospectively maintained tissue bank. The ability of extent of UCHL1 IHC staining to differentiate localized and metastatic tumors was compared with Ki-67 index.

Results

Among 46 total samples, UCHL1 expression at both the gene and protein level was significantly greater among localized GEP-NETs compared with metastatic tumors and metastases (p < 0.001). Hypermethylation of the UCHL1 promoter was commonly observed among metastatic primary tumors and metastases (those with the lowest UCHL1 expression) but not among localized tumors (p < 0.001). Poor staining (<50 %) for UCHL1 was observed in 27 % of localized tumors compared with 87 % of metastatic tumors (p = 0.001). The presence of <50 % staining for UCHL1 was 88 % sensitive and 73 % specific for identifying metastatic disease. In contrast, there was no association between Ki-67 index and metastatic disease. In multivariable analysis, only UCHL1 staining <50 % [odds ratio (OR) 24.5, p = 0.035] and vascular invasion (OR 38.4, p = 0.03) were independent risk factors for metastatic disease at the time of initial surgery.

Conclusions

Loss of UCHL1 expression by CpG promoter hypermethylation is associated with metastatic GEP-NETs. Extent of UCHL1 staining should be explored as a potentially clinically useful adjunct to Ki-67 index in evaluating GEP-NETs for aggressive features.

References

  1. 1.
    Pasieka JL. Carcinoid tumors. Surg Clin N Am. 2009;89(5):1123–37.PubMedCrossRefGoogle Scholar
  2. 2.
    Arnold R. Endocrine tumours of the gastrointestinal tract. Introduction: definition, historical aspects, classification, staging, prognosis and therapeutic options. Best Pract Res Clin Gastroenterol. 2005;19(4):491–505.PubMedCrossRefGoogle Scholar
  3. 3.
    Bosman FT, World Health Organization, International Agency for Research on Cancer. WHO classification of tumours of the digestive system. 2010; International Agency for Research on Cancer: Lyon.Google Scholar
  4. 4.
    Ellison TA, Wolfgang CL, Shi C, et al. A single institution’s 26-year experience with nonfunctional pancreatic neuroendocrine tumors: a validation of current staging systems and a new prognostic nomogram. Ann Surg. 2014;259(2):204–12.Google Scholar
  5. 5.
    Strosberg JR, Weber JM, Feldman M, Coppola D, Meredith K, Kvols LK. Prognostic validity of the American Joint Committee on Cancer staging classification for midgut neuroendocrine tumors. J Clin Oncol. 2013;31(4):420–5.PubMedCrossRefGoogle Scholar
  6. 6.
    Volante M, Daniele L, Asioli S, et al. Tumor staging but not grading is associated with adverse clinical outcome in neuroendocrine tumors of the appendix: a retrospective clinical pathologic analysis of 138 cases. Am J Surg Pathol. 2013;37(4):606–12.PubMedCrossRefGoogle Scholar
  7. 7.
    Modlin IM, Oberg K, Chung DC, et al. Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol. 2008;9(1):61–72.PubMedCrossRefGoogle Scholar
  8. 8.
    Wang YH, Lin Y, Xue L, Wang JH, Chen MH, Chen J. Relationship between clinical characteristics and survival of gastroenteropancreatic neuroendocrine neoplasms: a single-institution analysis (1995–2012) in South China. BMC Endocr Disord. 2012;12:30. doi:10.1186/1472-6823-12-30.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Yao JC, Hassan M, Phan A, et al. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol. 2008;26(18):3063–72.PubMedCrossRefGoogle Scholar
  10. 10.
    Anthony LB, Strosberg JR, Klimstra DS, et al. The NANETS consensus guidelines for the diagnosis and management of gastrointestinal neuroendocrine tumors (nets): well-differentiated nets of the distal colon and rectum. Pancreas. 2010;39(6):767–74.PubMedCrossRefGoogle Scholar
  11. 11.
    Boudreaux JP, Klimstra DS, Hassan MM, et al. The NANETS consensus guideline for the diagnosis and management of neuroendocrine tumors: well-differentiated neuroendocrine tumors of the jejunum, ileum, appendix, and cecum. Pancreas. 2010;39(6):753–66.PubMedCrossRefGoogle Scholar
  12. 12.
    Klimstra DS, Modlin IR, Coppola D, Lloyd RV, Suster S. The pathologic classification of neuroendocrine tumors: a review of nomenclature, grading, and staging systems. Pancreas. 2010;39(6):707–12.PubMedCrossRefGoogle Scholar
  13. 13.
    Ohike N, Morohoshi T. Pathological assessment of pancreatic endocrine tumors for metastatic potential and clinical prognosis. Endocr Pathol. 2005;16(1):33–40.PubMedCrossRefGoogle Scholar
  14. 14.
    Liu Y, Fallon L, Lashuel HA, Liu Z, Lansbury PT Jr. The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson’s disease susceptibility. Cell. 2002;111(2):209–18.PubMedCrossRefGoogle Scholar
  15. 15.
    Miyake Y, Tanaka K, Fukushima W, et al. UCHL1 S18Y variant is a risk factor for Parkinson’s disease in Japan. BMC Neurol. 2012;12:62. doi:10.1186/1471-2377-12-62.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Ragland M, Hutter C, Zabetian C, Edwards K. Association between the ubiquitin carboxyl-terminal esterase L1 gene (UCHL1) S18Y variant and Parkinson’s Disease: a HuGE review and meta-analysis. Am J Epidemiol. 2009;170(11):1344–57.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Xiang T, Li L, Yin X, et al. The ubiquitin peptidase UCHL1 induces G0/G1 cell cycle arrest and apoptosis through stabilizing p53 and is frequently silenced in breast cancer. PLoS One. 2012;7(1):e29783. doi:10.1371/journal.pone.0029783.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Bonazzi VF, Nancarrow DJ, Stark MS, et al. Cross-platform array screening identifies COL1A2, THBS1, TNFRSF10D and UCHL1 as genes frequently silenced by methylation in melanoma. PLoS One. 2011;6(10):e26121. doi:10.1371/journal.pone.0026121.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Li L, Tao Q, Jin H, et al. The tumor suppressor UCHL1 forms a complex with p53/MDM2/ARF to promote p53 signaling and is frequently silenced in nasopharyngeal carcinoma. Clin Cancer Res. 2010;16(11):2949–58.PubMedCrossRefGoogle Scholar
  20. 20.
    Seol MA, Chu IS, Lee MJ, et al. Genome-wide expression patterns associated with oncogenesis and sarcomatous transdifferentiation of cholangiocarcinoma. BMC Cancer. 2011;11:78. doi:10.1186/1471-2407-11-78.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Kleiman DA, Buitrago D, Crowley MJ, et al. Thyroid stimulating hormone increases iodine uptake by thyroid cancer cells during BRAF silencing. J Surg Res. 2013;182(1):85–93.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Ehrich M, Nelson MR, Stanssens P, et al. Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc Natl Acad Sci USA. 2005;102(44):15785–90.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Oberg K. Neuroendocrine tumors of the digestive tract: impact of new classifications and new agents on therapeutic approaches. Curr Opin Oncol. 2012;24(4):433–40.PubMedCrossRefGoogle Scholar
  25. 25.
    Bheda A, Shackelford J, Pagano JS. Expression and functional studies of ubiquitin C-terminal hydrolase L1 regulated genes. PLoS One. 2009;4(8):e6764. doi:10.1371/journal.pone.0006764.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Yamaguchi T, Fujimori T, Tomita S, et al. Clinical validation of the gastrointestinal NET grading system: Ki67 index criteria of the WHO 2010 classification is appropriate to predict metastasis or recurrence. Diagn Pathol. 2013;8:65. doi:10.1186/1746-1596-8-65.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Jamali M, Chetty R. Predicting prognosis in gastroentero-pancreatic neuroendocrine tumors: an overview and the value of Ki-67 immunostaining. Endocr Pathol. 2008;19(4):282–8.PubMedCrossRefGoogle Scholar

Copyright information

© Society of Surgical Oncology 2014

Authors and Affiliations

  • David A. Kleiman
    • 1
  • Toni Beninato
    • 1
  • Samuel Sultan
    • 1
  • Michael J. P. Crowley
    • 1
  • Brendan Finnerty
    • 1
  • Ritu Kumar
    • 1
  • Nicole C. Panarelli
    • 2
  • Yi-Fang Liu
    • 2
  • Michael D. Lieberman
    • 1
  • Marco Seandel
    • 1
  • Todd Evans
    • 1
  • Olivier Elemento
    • 3
  • Rasa Zarnegar
    • 1
  • Thomas J. FaheyIII
    • 1
  1. 1.Division of Endocrine and Minimally Invasive Surgery, Department of Surgery, New York Presbyterian HospitalWeill Cornell Medical CollegeNew YorkUSA
  2. 2.Department of Pathology, New York Presbyterian HospitalWeill Cornell Medical CollegeNew YorkUSA
  3. 3.Department of Physiology and Biophysics, New York Presbyterian HospitalWeill Cornell Medical CollegeNew YorkUSA

Personalised recommendations