Skip to main content
Log in

Patients with CD133-Negative Colorectal Liver Metastasis Have a Poor Prognosis After Hepatectomy

  • Hepatobiliary Tumors
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

The prognostic factors for patients with colorectal cancer liver metastasis (L-Mets) have not been fully described.

Methods

Resected specimens were obtained surgically from 1998 to 2008 at our university hospital. We investigated whether the status of two primary lesion cancer stem biomarkers, CD44 and CD133, were maintained in L-Mets and whether these markers were L-Mets prognostic factors. To investigate the CD133 and CD44 status, proliferation, invasiveness, and chemoresistance were examined immunohistochemically by using MIB-1, E-cadherin, and ABC-G2.

Results

The CD44-positive rate in primary lesions and L-Mets was 41.4 and 58.7 %, respectively. There was no correlation of CD44 expression between primary lesions and L-Mets (r = 0.250, p = 0.071). The CD133-positive rate in primary lesions and L-Mets was 53.6 and 44.6 %, respectively. There was no correlation of CD133 expression between primary lesions and L-Mets (r = 0.219, p = 0.135). In the CD133-negative group, the MIB-1 index was significantly higher than in the CD133-positive group (61.6 vs. 46.3 %, p = 0.003), and E-cadherin expression was significantly lower in the CD133-negative group compared with the CD133-positive group (29.3 vs. 46.8 %, p = 0.001). Absence of CD133 expression in L-Mets correlated with poor overall survival (p = 0.006), and multivariate regression analysis showed that it was an independent marker for poor survival (hazard ratio 0.320, p = 0.0016).

Conclusions

The absence of CD133 expression in L-Mets was an independent marker and a poor prognostic factor, possibly because of increased proliferation and invasiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cunningham D, Atkin W, Lenz HJ, et al. Colorectal cancer. Lancet. 2010;375:1030–47.

    Article  PubMed  Google Scholar 

  2. Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  3. Tanaka K, Ichikawa Y, Endo I. Liver resection for advanced or aggressive colorectal cancer metastases in the era of effective chemotherapy: a review. Int J Clin Oncol. 2011;16:452–63.

    Article  CAS  PubMed  Google Scholar 

  4. Schmoll HJ, Van Cutsem E, Stein A, et al. ESMO Consensus Guidelines for management of patients with colon and rectal cancer: a personalized approach to clinical decision making. Ann Oncol. 2012;23:2479–516.

    Article  CAS  PubMed  Google Scholar 

  5. Folprecht G, Gruenberger T, Bechstein WO, et al. Tumour response and secondary resectability of colorectal liver metastases following neoadjuvant chemotherapy with cetuximab: the CELIM randomised phase 2 trial. Lancet Oncol. 2010;11:38–47.

    Article  CAS  PubMed  Google Scholar 

  6. Vermaat JS, Nijman IJ, Koudijs MJ, et al. Primary colorectal cancers and their subsequent hepatic metastases are genetically different: implications for selection of patients for targeted treatment. Clin Cancer Res. 2012;18:688–99.

    Article  CAS  PubMed  Google Scholar 

  7. Thompson AM, Jordan LB, Quinlan P, et al. Prospective comparison of switches in biomarker status between primary and recurrent breast cancer: the Breast Recurrence in Tissues Study (BRITS). Breast Cancer Res. 2010;12:R92.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Kobayashi H, Sugihara K, Uetake H, et al. Messenger RNA expression of COX-2 and angiogenic factors in primary colorectal cancer and corresponding liver metastasis. Int J Oncol. 2009;34:1147–53.

    Article  CAS  PubMed  Google Scholar 

  9. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.

    Article  CAS  PubMed  Google Scholar 

  10. Nadal R, Ortega FG, Salido M, et al. CD133 expression in circulating tumor cells from breast cancer patients: potential role in resistance to chemotherapy. Int J Cancer. 2013;133:2398–407.

    Article  CAS  PubMed  Google Scholar 

  11. Tanaka K, Shimada H, Ueda M, et al. Long-term characteristics of 5-year survivors after liver resection for colorectal metastases. Ann Surg Oncol. 2007;14:1336–46.

    Article  PubMed  Google Scholar 

  12. Tanaka K, Shimada H, Miura M, et al. Metastatic tumor doubling time: most important prehepatectomy predictor of survival and nonrecurrence of hepatic colorectal cancer metastasis. World J Surg. 2004;28:263–70.

    Article  PubMed  Google Scholar 

  13. Wang Q, Chen ZG, Du CZ, et al. Cancer stem cell marker CD133+ tumour cells and clinical outcome in rectal cancer. Histopathology. 2009;55:284–93.

    Article  PubMed  Google Scholar 

  14. Wakamatsu Y, Sakamoto N, Oo HZ, et al. Expression of cancer stem cell markers ALDH1, CD44 and CD133 in primary tumor and lymph node metastasis of gastric cancer. Pathol Int. 2012;62:112–9.

    Article  PubMed  Google Scholar 

  15. Fan L, He F, Liu H, et al. CD133: a potential indicator for differentiation and prognosis of human cholangiocarcinoma. BMC Cancer. 2011;11:320.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Kopetz S, Chang GJ, Overman MJ, et al. Improved survival in metastatic colorectal cancer is associated with adoption of hepatic resection and improved chemotherapy. J Clin Oncol. 2009;27:3677–83.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Kobayashi S, Yamada-Okabe H, Suzuki M, et al. LGR5-positive colon cancer stem cells interconvert with drug-resistant LGR5-negative cells and are capable of tumor reconstitution. Stem Cells. 2012;30:2631–44.

    Article  CAS  PubMed  Google Scholar 

  18. Kim HJ, Kim MJ, Ahn SH, et al. Different prognostic significance of CD24 and CD44 expression in breast cancer according to hormone receptor status. Breast. 2011;20:78–85.

    Article  PubMed  Google Scholar 

  19. Yin S, Li J, Hu C, et al. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer. 2007;120:1444–50.

    Article  CAS  PubMed  Google Scholar 

  20. Brescia P, Ortensi B, Fornasari L, et al. CD133 is essential for glioblastoma stem cell maintenance. Stem Cells. 2013;31:857–69.

    Article  CAS  PubMed  Google Scholar 

  21. Wen L, Chen XZ, Yang K, et al. Prognostic value of cancer stem cell marker CD133 expression in gastric cancer: a systematic review. PLoS One. 2013;8:e59154.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Mizugaki H, Sakakibara-Konishi J, Kikuchi J, et al. CD133 expression: a potential prognostic marker for non-small cell lung cancers. Int J Clin Oncol. 2013;39:1070–81.

    Google Scholar 

  23. Ahmed MA, Aleskandarany MA, Rakha EA, et al. A CD44(−)/CD24(+) phenotype is a poor prognostic marker in early invasive breast cancer. Breast Cancer Res Treat. 2012;133:979–95.

    Article  CAS  PubMed  Google Scholar 

  24. Poplawski AB, Jankowski M, Erickson SW, et al. Frequent genetic differences between matched primary and metastatic breast cancer provide an approach to identification of biomarkers for disease progression. Eur J Hum Genet. 2010;18:560–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Arapantoni-Dadioti P, Valavanis C, Gavressea T, et al. Discordant expression of hormone receptors and HER2 in breast cancer. A retrospective comparison of primary tumors with paired metachronous recurrences or metastases. J BUON. 2012;17:277–83.

    CAS  PubMed  Google Scholar 

  26. Goranova TE, Ohue M, Shimoharu Y, Kato K. Dynamics of cancer cell subpopulations in primary and metastatic colorectal tumors. Clin Exp Metastasis. 2011;28:427–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Horst D, Kriegl L, Engel J, et al. CD133 expression is an independent prognostic marker for low survival in colorectal cancer. Br J Cancer. 2008;99:1285–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Shmelkov SV, Butler JM, Hooper AT, et al. CD133 expression is not restricted to stem cells, and both CD133+ and CD133− metastatic colon cancer cells initiate tumors. J Clin Invest. 2008;118:2111–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Zhao P, Li Y, Lu Y. Aberrant expression of CD133 protein correlates with Ki-67 expression and is a prognostic marker in gastric adenocarcinoma. BMC Cancer. 2010;10:218.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Hentic O, Couvelard A, Rebours V, et al. Ki-67 index, tumor differentiation, and extent of liver involvement are independent prognostic factors in patients with liver metastases of digestive endocrine carcinomas. Endocr Relat Cancer. 2011;18:51–9.

    Article  CAS  PubMed  Google Scholar 

  31. Yang J, Weinberg RA. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell. 2008;14:818–29.

    Article  CAS  PubMed  Google Scholar 

  32. Chen X, Wang Y, Xia H, et al. Loss of E-cadherin promotes the growth, invasion and drug resistance of colorectal cancer cells and is associated with liver metastasis. Mol Biol Rep. 2012;39:6707–14.

    Article  CAS  PubMed  Google Scholar 

  33. Wu Q, Guo R, Lin M, et al. MicroRNA-200a inhibits CD133/1+ ovarian cancer stem cells migration and invasion by targeting E-cadherin repressor ZEB2. Gynecol Oncol. 2011;122:149–54.

    Article  CAS  PubMed  Google Scholar 

  34. Liu HG, Pan YF, You J, et al. Expression of ABCG2 and its significance in colorectal cancer. Asian Pac J Cancer Prev. 2010;11:845–8.

    PubMed  Google Scholar 

  35. Sodani K, Tiwari AK, Singh S, et al. GW583340 and GW2974, human EGFR and HER-2 inhibitors, reverse ABCG2- and ABCB1-mediated drug resistance. Biochem Pharmacol. 2012;83:1613–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Vasiliou V, Vasiliou K, Nebert DW. Human ATP-binding cassette (ABC) transporter family. Hum Genomics. 2009;3:281–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Mani SA, Guo W, Liao MJ, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Kong D, Li Y, Wang Z, Sarkar FH. Cancer stem cells and epithelial-to-mesenchymal transition (EMT)-phenotypic cells: are they cousins or twins? Cancers (Basel). 2011;3:716–29.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Ma XL, Xiao ZL, Liu L, et al. Meta-analysis of circulating tumor cells as a prognostic marker in lung cancer. Asian Pac J Cancer Prev. 2012;13:1137–44.

    Article  PubMed  Google Scholar 

  40. Pilati P, Mocellin S, Bertazza L, et al. Prognostic value of putative circulating cancer stem cells in patients undergoing hepatic resection for colorectal liver metastasis. Ann Surg Oncol. 2012;19:402–8.

    Article  PubMed  Google Scholar 

Download references

Disclosure

None of the authors have any commercial interest associated with this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuniya Tanaka MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, S., Tanaka, K., Takeda, K. et al. Patients with CD133-Negative Colorectal Liver Metastasis Have a Poor Prognosis After Hepatectomy. Ann Surg Oncol 21, 1853–1861 (2014). https://doi.org/10.1245/s10434-014-3549-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-014-3549-1

Keywords

Navigation