Annals of Surgical Oncology

, Volume 21, Issue 6, pp 2059–2067 | Cite as

The GIST of Targeted Therapy for Malignant Melanoma

  • Danielle M. Bello
  • Ronald P. DeMatteo
  • Charlotte E. Ariyan
Melanomas

Abstract

The high response rates to the tyrosine kinase inhibitor imatinib in KIT-mutated gastrointestinal stromal tumors (GIST) has led to a paradigm shift in cancer treatment. In a parallel fashion, the field of melanoma is shifting with the utilization of targeted therapy to treat BRAF-mutated melanoma. We reviewed published literature in PubMed on GIST and melanoma, with a focus on both past and current clinical trials. The data presented centers on imatinib, vemurafenib, and most recently dabrafenib, targeting KIT and BRAF mutations and their outcomes in GIST and melanoma. The BRAFV600E melanoma mutation, like the KIT exon 11 mutation in GIST, has the highest response to therapy. High response rates with inhibition of KIT in GIST have not been recapitulated in KIT-mutated melanoma. Median time to resistance to targeted agents occurs in ~7 months with BRAF inhibitors and 2 years for imatinib in GIST. In GIST, the development of secondary mutations leads to resistance; however, there have been no similar gatekeeper mutations found in melanoma. Although surgery remains an important component of the treatment of early GIST and melanoma, surgeons will need to continue to define the thresholds and timing for operation in the setting of metastatic disease with improved targeted therapies. Combination treatment strategies may result in more successful clinical outcomes in the management of melanoma in the future.

References

  1. 1.
    Hauschild A, Agarwala SS, Trefzer U, et al. Results of a phase III, randomized, placebo-controlled study of sorafenib in combination with carboplatin and paclitaxel as second-line treatment in patients with unresectable stage III or stage IV melanoma. J Clin Oncol. 2009;27:2823–30.PubMedCrossRefGoogle Scholar
  2. 2.
    Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 2001;344:1031–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Druker BJ. Inhibition of the Bcr-Abl tyrosine kinase as a therapeutic strategy for CML. Oncogene. 2002;21:8541–6.PubMedCrossRefGoogle Scholar
  4. 4.
    DeMatteo RP, Lewis JJ, Leung D, Mudan SS, Woodruff JM, Brennan MF. Two hundred gastrointestinal stromal tumors: recurrence patterns and prognostic factors for survival. Ann Surg. 2000;231:51–8.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Verweij J, Casali PG, Zalcberg J, et al. Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial. Lancet. 2004;364(9440):1127–34.PubMedCrossRefGoogle Scholar
  6. 6.
    Gold JS, van der Zwan SM, Gonen M, et al. Outcome of metastatic GIST in the era before tyrosine kinase inhibitors. Ann Surg Oncol. 2007;14:134–42.PubMedCrossRefGoogle Scholar
  7. 7.
    Bamboat ZM, Dematteo RP. Updates on the management of gastrointestinal stromal tumors. Surg Oncol Clin North Am. 2012;21:301–16.CrossRefGoogle Scholar
  8. 8.
    Rubin BP, Singer S, Tsao C, et al. KIT activation is a ubiquitous feature of gastrointestinal stromal tumors. Cancer Res. 2001;61:8118–21.PubMedGoogle Scholar
  9. 9.
    Heinrich MC, Corless CL, Duensing A, et al. PDGFRA activating mutations in gastrointestinal stromal tumors. Science. 2003;299(5607):708–10.PubMedCrossRefGoogle Scholar
  10. 10.
    Agaram NP, Laquaglia MP, Ustun B, et al. Molecular characterization of pediatric gastrointestinal stromal tumors. Clin Cancer Res. 2008;14:3204–15.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Falchook GS, Trent JC, Heinrich MC, et al. BRAF mutant gastrointestinal stromal tumor: first report of regression with BRAF inhibitor dabrafenib (GSK2118436) and whole exomic sequencing for analysis of acquired resistance. Oncotarget. 2013;4:310–5.PubMedCentralPubMedGoogle Scholar
  12. 12.
    Hirota S, Isozaki K, Moriyama Y, et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science. 1998;279(5350):577–80.PubMedCrossRefGoogle Scholar
  13. 13.
    Lasota J, Jasinski M, Sarlomo-Rikala M, Miettinen M. Mutations in exon 11 of c-Kit occur preferentially in malignant versus benign gastrointestinal stromal tumors and do not occur in leiomyomas or leiomyosarcomas. Am J Pathol. 1999;154:53–60.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    van Oosterom AT, Judson I, Verweij J, et al. Safety and efficacy of imatinib (STI571) in metastatic gastrointestinal stromal tumours: a phase I study. Lancet. 2001;358(9291):1421–3.PubMedCrossRefGoogle Scholar
  15. 15.
    van Oosterom AT, Judson IR, Verweij J, et al. Update of phase I study of imatinib (STI571) in advanced soft tissue sarcomas and gastrointestinal stromal tumors: a report of the EORTC soft tissue and bone sarcoma Group. Eur J Cancer. 2002;38(Suppl 5):S83–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Blanke C. Current management of GIST. Clin Adv Hematol Oncol. 2004;2:280, 283.Google Scholar
  17. 17.
    Demetri GD, von Mehren M, Blanke CD, et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med. 2002;347:472–80.PubMedCrossRefGoogle Scholar
  18. 18.
    Heinrich MC, Corless CL, Demetri GD, et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol. 2003;21:4342–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Heinrich MC, Owzar K, Corless CL, et al. Correlation of kinase genotype and clinical outcome in the North American Intergroup phase III trial of imatinib mesylate for treatment of advanced gastrointestinal stromal tumor: CALGB 150105 study by cancer and leukemia Group B and Southwest oncology group. J Clin Oncol. 2008;26:5360–7.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Gastrointestinal Stromal Tumor Meta-Analysis Group (MetaGIST). Comparison of two doses of imatinib for the treatment of unresectable or metastatic gastrointestinal stromal tumors: a meta-analysis of 1,640 patients. J Clin Oncol. 2010;28:1247–53.CrossRefGoogle Scholar
  21. 21.
    DeMatteo RP, Maki RG, Singer S, Gonen M, Brennan MF, Antonescu CR. Results of tyrosine kinase inhibitor therapy followed by surgical resection for metastatic gastrointestinal stromal tumor. Ann Surg. 2007;245:347–52.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Fletcher CD, Berman JJ, Corless C, et al. Diagnosis of gastrointestinal stromal tumors: a consensus approach. Hum Pathol. 2002;33:459–65.PubMedCrossRefGoogle Scholar
  23. 23.
    Joensuu H. Risk stratification of patients diagnosed with gastrointestinal stromal tumor. Hum Pathol. 2008;39:1411–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Dematteo RP, Gold JS, Saran L, et al. Tumor mitotic rate, size, and location independently predict recurrence after resection of primary gastrointestinal stromal tumor (GIST). Cancer. 2008;112:608–15.PubMedCrossRefGoogle Scholar
  25. 25.
    Gold JS, Gonen M, Gutierrez A, et al. Development and validation of a prognostic nomogram for recurrence-free survival after complete surgical resection of localised primary gastrointestinal stromal tumour: a retrospective analysis. Lancet Oncol. 2009;10:1045–52.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Dematteo RP, Ballman KV, Antonescu CR, et al. Long-term results of adjuvant imatinib mesylate in localized, high-risk, primary gastrointestinal stromal tumor: ACOSOG Z9000 (Alliance) intergroup phase 2 trial. Ann Surg. 2013;258:422–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Dematteo RP, Ballman KV, Antonescu CR, et al. Adjuvant imatinib mesylate after resection of localised, primary gastrointestinal stromal tumour: a randomised, double-blind, placebo-controlled trial. Lancet. 2009;373(9669):1097–04.CrossRefGoogle Scholar
  28. 28.
    Joensuu H, Eriksson M, Sundby Hall K, et al. One vs three years of adjuvant imatinib for operable gastrointestinal stromal tumor: a randomized trial. JAMA. 2012;307:1265–72.PubMedCrossRefGoogle Scholar
  29. 29.
    Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60:277–300.PubMedCrossRefGoogle Scholar
  30. 30.
    Tsao H, Atkins MB, Sober AJ. Management of cutaneous melanoma. N Engl J Med. 2004;351:998–1012.PubMedCrossRefGoogle Scholar
  31. 31.
    Wasif N, Bagaria SP, Ray P, Morton DL. Does metastasectomy improve survival in patients with stage IV melanoma? A cancer registry analysis of outcomes. J Surg Oncol. 2011;104:111–5.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Sosman JA, Moon J, Tuthill RJ, et al. A phase 2 trial of complete resection for stage IV melanoma: results of southwest oncology group clinical trial S9430. Cancer. 2011;117:4740–06.CrossRefGoogle Scholar
  33. 33.
    Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.PubMedCrossRefGoogle Scholar
  34. 34.
    Wan PTC, Garnett MJ, Roe SM, et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell. 2004;116:855–67.PubMedCrossRefGoogle Scholar
  35. 35.
    Ascierto PA, Kirkwood JM, Grob JJ, et al. The role of BRAF V600 mutation in melanoma. J Transl Med. 2012;10:85.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Halait H, Demartin K, Shah S, et al. Analytical performance of a real-time PCR-based assay for V600 mutations in the BRAF gene, used as the companion diagnostic test for the novel BRAF inhibitor vemurafenib in metastatic melanoma. Diagn Mol Pathol. 2012;21:1–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Forbes SA, Bindal N, Bamford S, et al. COSMIC: mining complete cancer genomes in the catalogue of somatic mutations in cancer. Nucleic Acids Res. 2011;39(Database issue):D945–50.Google Scholar
  38. 38.
    Curtin JA, Busam K, Pinkel D, Bastian BC. Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol. 2006;24:4340–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Beadling C, Jacobson-Dunlop E, Hodi FS, et al. KIT gene mutations and copy number in melanoma subtypes. Clin Cancer Res. 2008;14:6821–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Tsai J, Lee JT, Wang W, et al. Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc Natl Acad Sci USA. 2008;105:3041–6.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Flaherty KT, Puzanov I, Kim KB, et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 2010;363:809–19.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Chapman PB, Hauschild A, Robert C, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364:2507–16.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Kefford R, Arkenau H, Brown MEA. Phase I/II study of GSK2118436, a selective inhibitor of oncogenic mutant BRAF kinase, in patients with metastatic melanoma and other solid tumors. J Clin Oncol. 2010;28(Suppl):abstract 8503.Google Scholar
  44. 44.
    Hauschild A, Grob JJ, Demidov LV, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012;380(9839):358–65.PubMedCrossRefGoogle Scholar
  45. 45.
    Woodman SE, Davies MA. Targeting KIT in melanoma: a paradigm of molecular medicine and targeted therapeutics. Biochem Pharmacol. 2010;80:568–74.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Postow MA, Carvajal RD. Therapeutic implications of KIT in melanoma. Cancer J. 2012;18:137–41.PubMedCrossRefGoogle Scholar
  47. 47.
    Carvajal RD, Antonescu CR, Wolchok JD, et al. KIT as a therapeutic target in metastatic melanoma. JAMA. 2011;305:2327–34.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Guo J, Si L, Kong Y, et al. Phase II, open-label, single-arm trial of imatinib mesylate in patients with metastatic melanoma harboring c-Kit mutation or amplification. J Clin Oncol. 2011;29:2904–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Fisher DE, Barnhill R, Hodi FS, et al. Melanoma from bench to bedside: meeting report from the 6th International Melanoma Congress. Pigment Cell Melanoma Res. 2010;23:14–26.PubMedCrossRefGoogle Scholar
  50. 50.
    Hodi FS, Friedlander P, Corless CL, et al. Major response to imatinib mesylate in KIT-mutated melanoma. J Clin Oncol. 2008;26:2046–51.PubMedCrossRefGoogle Scholar
  51. 51.
    Su F, Viros A, Milagre C, et al. RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. N Engl J Med. 2012;366:207–15.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Lacouture ME, O’Reilly K, Rosen N, Solit DB. Presence of frequent underlying RAS mutations in cutaneous squamous cell carcinomas and keratoacanthomas (cuSCC/KA) that develop in patients during vemurafenib therapy. J Clin Oncol. 2011;29(Suppl; abstr 8520):531 s.Google Scholar
  53. 53.
    Oberholzer PA, Kee D, Dziunycz P, et al. RAS mutations are associated with the development of cutaneous squamous cell tumors in patients treated with RAF inhibitors. J Clin Oncol. 2012;30:316–21.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Anforth R, Tembe V, Blumetti T, Fernandez-Penas P. Mutational analysis of cutaneous squamous cell carcinomas and verrucal keratosis in patients taking BRAF inhibitors. Pigment Cell Melanoma Res. 2012;25:569–72.PubMedCrossRefGoogle Scholar
  55. 55.
    Anforth R, Fernandez-Penas P, Long GV. Cutaneous toxicities of RAF inhibitors. Lancet Oncol. 2013;14:e11–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Heinrich MC, Maki RG, Corless CL, et al. Primary and secondary kinase genotypes correlate with the biological and clinical activity of sunitinib in imatinib-resistant gastrointestinal stromal tumor. J Clin Oncol. 2008;26:5352–9.PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Xing F, Persaud Y, Pratilas CA, et al. Concurrent loss of the PTEN and RB1 tumor suppressors attenuates RAF dependence in melanomas harboring (V600E)BRAF. Oncogene. 2012;31:446–57.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Paraiso KHT, Fedorenko IV, Cantini LP, et al. Recovery of phospho-ERK activity allows melanoma cells to escape from BRAF inhibitor therapy. Br J Cancer. 2010;102:1724–30.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Tap WD, Gong KW, Dering J, et al. Pharmacodynamic characterization of the efficacy signals due to selective BRAF inhibition with PLX4032 in malignant melanoma. Neoplasia. 2010;12:637–49.PubMedCentralPubMedGoogle Scholar
  60. 60.
    Smalley KSM, Lioni M, Dalla Palma M, et al. Increased cyclin D1 expression can mediate BRAF inhibitor resistance in BRAF V600E–mutated melanomas. Mol Cancer Ther. 2008;7:2876–83.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Paraiso KHT, Xiang Y, Rebecca VW, et al. PTEN loss confers BRAF inhibitor resistance to melanoma cells through the suppression of BIM expression. Cancer Res. 2011;71:2750–60.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Heinrich MC, Corless CL, Blanke CD, et al. Molecular correlates of imatinib resistance in gastrointestinal stromal tumors. J Clin Oncol. 2006;24:4764–74.PubMedCrossRefGoogle Scholar
  63. 63.
    Lasota J, Corless CL, Heinrich MC, et al. Clinicopathologic profile of gastrointestinal stromal tumors (GISTs) with primary KIT exon 13 or exon 17 mutations: a multicenter study on 54 cases. Mod Pathol. 2008;21:476–84.PubMedCrossRefGoogle Scholar
  64. 64.
    Heinrich MC, Marino-Enriquez A, Presnell A, et al. Sorafenib inhibits many kinase mutations associated with drug-resistant gastrointestinal stromal tumors. Mol Cancer Ther. 2012;11:1770–80.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Fedorenko IV, Paraiso KHT, Smalley KSM. Acquired and intrinsic BRAF inhibitor resistance in BRAF V600E mutant melanoma. Biochem Pharmacol. 2011;82:201–9.PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Whittaker S, Kirk R, Hayward R, Zambon A, Viros A. Gatekeeper mutations mediate resistance to BRAF-targeted therapies. Sci Transl Med. 2010;2(35ra41).Google Scholar
  67. 67.
    Garraway LA, Widlund HR, Rubin MA, et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature. 2005;436(7047):117–22.PubMedCrossRefGoogle Scholar
  68. 68.
    Stahl JM, Sharma A, Cheung M, et al. Deregulated Akt3 activity promotes development of malignant melanoma. Cancer Res. 2004;64:7002–10.PubMedCrossRefGoogle Scholar
  69. 69.
    Johannessen CM, Boehm JS, Kim SY, et al. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature. 2010;468(7326):968–72.PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Sauter ER, Yeo UC, von Stemm A, et al. Cyclin D1 is a candidate oncogene in cutaneous melanoma. Cancer Res. 2002;62:3200–6.PubMedGoogle Scholar
  71. 71.
    Du J, Widlund HR, Horstmann MA, et al. Critical role of CDK2 for melanoma growth linked to its melanocyte-specific transcriptional regulation by MITF. Cancer Cell. 2004;6:565–76.PubMedCrossRefGoogle Scholar
  72. 72.
    Poulikakos PI, Persaud Y, Janakiraman M, et al. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature. 2011;480(7377):387–90.PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Montagut C, Sharma SV, Shioda T, et al. Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma. Cancer Res. 2008;68:4853–61.PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Nazarian R, Shi H, Wang Q, et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature. 2010;468(7326):973–7.PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Wagle N, Emery C, Berger MF, et al. Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J Clin Oncol. 2011;29:3085–96.PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Villanueva J, Vultur A, Lee JT, et al. Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3 K. Cancer Cell. 2010;18:683–95.PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Robert C, Thomas L, Bondarenko I, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364:2517–26.PubMedCrossRefGoogle Scholar
  79. 79.
    Prieto PA, Yang JC, Sherry RM, et al. CTLA-4 blockade with ipilimumab: long-term follow-up of 177 patients with metastatic melanoma. Clin Cancer Res. 2012;18:2039–47.PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Balachandran VP, Cavnar MJ, Zeng S, et al. Imatinib potentiates antitumor T cell responses in gastrointestinal stromal tumor through the inhibition of Ido. Nat Med. 2011;17:1094–100.PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Ribas A, Hodi FS, Callahan M, Konto C, Wolchok J. Hepatotoxicity with combination of vemurafenib and ipilimumab. N Engl J Med. 2013;368:1365–6.PubMedCrossRefGoogle Scholar
  82. 82.
    Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54.PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Brahmer JR, Tykodi SS, Chow LQM, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366:2455–65.PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Wolchok JD, Kluger H, Callahan MK, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369:122–33.PubMedCrossRefGoogle Scholar

Copyright information

© Society of Surgical Oncology 2014

Authors and Affiliations

  • Danielle M. Bello
    • 1
  • Ronald P. DeMatteo
    • 1
  • Charlotte E. Ariyan
    • 1
  1. 1.Department of SurgeryMemorial Sloan-Kettering Cancer CenterNew YorkUSA

Personalised recommendations