Advertisement

Annals of Surgical Oncology

, Volume 20, Issue 13, pp 4282–4288 | Cite as

Preoperative Consolidation-to-Tumor Ratio and SUVmax Stratify the Risk of Recurrence in Patients Undergoing Limited Resection for Lung Adenocarcinoma ≤2 cm

  • Jun-ichi Nitadori
  • Adam J. Bograd
  • Eduardo A. Morales
  • Nabil P. Rizk
  • Mark P. S. Dunphy
  • Camelia S. Sima
  • Valerie W. Rusch
  • Prasad S. AdusumilliEmail author
Thoracic Oncology

Abstract

Purpose

Limited resection is an increasingly utilized option for treatment of clinical stage IA lung adenocarcinoma (ADC) ≤2 cm (T1aN0M0), yet there are no validated predictive factors for postoperative recurrence. We investigated the prognostic value of preoperative consolidation/tumor (C/T) ratio [on computed tomography (CT) scan] and maximum standardized uptake value (SUVmax) on 18F-fluorodeoxyglucose-positron emission tomography (PET) scan.

Methods

We retrospectively reviewed 962 consecutive patients who underwent limited resection for lung cancer at Memorial Sloan-Kettering between 2000 and 2008. Patients with available CT and PET scans were included in the analysis. C/T ratio of 25 % (in accordance with the Japan Clinical Oncology Group 0201) and SUVmax of 2.2 (cohort median) were used as cutoffs. Cumulative incidence of recurrence (CIR) was assessed.

Results

A total of 181 patients met the study inclusion criteria. Patients with a low C/T ratio (n = 15) had a significantly lower 5-year recurrence rate compared with patients with a high C/T ratio (n = 166) (5-year CIR, 0 vs. 33 %; p = 0.015), as did patients with low SUVmax (n = 86) compared with patients with high SUVmax (n = 95; 5-year CIR, 18 vs. 40 %; p = 0.002). Furthermore, within the high C/T ratio group, SUVmax further stratified risk of recurrence [5-year CIR, 22 % (low) vs. 40 % (high); p = 0.018].

Conclusions

With the expected increase in diagnoses of small lung ADC as a result of more widespread use of CT screening, C/T ratio and SUVmax are widely available markers that can be used to stratify the risk of recurrence among cT1aN0M0 patients after limited resection.

Keywords

Small lung adenocarcinoma Limited resection Positron emission tomography SUVmax Consolidation/tumor ratio 

Notes

Acknowledgment

The authors thank Joe Dycoco for his help with the lung adenocarcinoma database at the Division of Thoracic Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, and David Sewell, for his editorial assistance.

Funding

This work was supported, in part, by the International Association for the Study of Lung Cancer Young Investigator Award; National Lung Cancer Partnership/LUNGevity Foundation Research Grant; American Association for Thoracic Surgery Third Edward D. Churchill Research Scholarship; William H. Goodwin and Alice Goodwin, the Commonwealth Foundation for Cancer Research and the Experimental Therapeutics Center; the National Cancer Institute (Grants U54CA137788 and U54CA132378); and the U.S. Department of Defense (Grant LC110202).

Disclosure

The authors declare no conflicts of interest.

Supplementary material

10434_2013_3212_MOESM1_ESM.docx (18 kb)
Supplementary material 1 (DOCX 17 kb)

References

  1. 1.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11–30.PubMedCrossRefGoogle Scholar
  2. 2.
    Devesa SS, Bray F, Vizcaino AP, et al. International lung cancer trends by histologic type: male:female differences diminishing and adenocarcinoma rates rising. Int J Cancer. 2005;117:294–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Curado MP, Edwards B, Shin HR. Cancer Incidence in Five Continents. Vol. IX. IARC Scientific Publications No. 160. Lyon: IARC; 2007.Google Scholar
  4. 4.
    Henschke CI, Yankelevitz DF, Libby DM, et al. Survival of patients with stage I lung cancer detected on CT screening. N Engl J Med. 2006;355:1763–71.PubMedCrossRefGoogle Scholar
  5. 5.
    Hocking WG, Hu P, Oken MM, et al. Lung cancer screening in the randomized Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. J Natl Cancer Inst. 2010;102:722–31.PubMedCrossRefGoogle Scholar
  6. 6.
    Aberle DR, Berg CD, Black WC, et al. The National Lung Screening Trial: overview and study design. Radiology. 2011;258:243–53.PubMedCrossRefGoogle Scholar
  7. 7.
    Ginsberg RJ, Rubinstein LV. Randomized trial of lobectomy versus limited resection for T1 N0 non-small cell lung cancer. Lung Cancer Study Group. Ann Thorac Surg. 1995;60:615–22.PubMedCrossRefGoogle Scholar
  8. 8.
    Okada M, Koike T, Higashiyama M, et al. Radical sublobar resection for small-sized non-small cell lung cancer: a multicenter study. J Thorac Cardiovasc Surg. 2006;132:769–75.PubMedCrossRefGoogle Scholar
  9. 9.
    Kuriyama K, Seto M, Kasugai T, et al. Ground-glass opacity on thin-section CT: value in differentiating subtypes of adenocarcinoma of the lung. AJR Am J Roentgenol. 1999;173:465–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Jang HJ, Lee KS, Kwon OJ, et al. Bronchioloalveolar carcinoma: focal area of ground-glass attenuation at thin-section CT as an early sign. Radiology. 1996;199:485–88.PubMedGoogle Scholar
  11. 11.
    Nakata M, Saeki H, Takata I, et al. Focal ground-glass opacity detected by low-dose helical CT. Chest. 2002;121:1464–67.PubMedCrossRefGoogle Scholar
  12. 12.
    Okada M, Nishio W, Sakamoto T, et al. Correlation between computed tomographic findings, bronchioloalveolar carcinoma component, and biologic behavior of small-sized lung adenocarcinomas. J Thorac Cardiovasc Surg. 2004;127:857–61.PubMedCrossRefGoogle Scholar
  13. 13.
    Nakayama H, Yamada K, Saito H, et al. Sublobar resection for patients with peripheral small adenocarcinomas of the lung: surgical outcome is associated with features on computed tomographic imaging. Ann Thorac Surg. 2007;84:1675–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Dong B, Sato M, Sakurada A, et al. Computed tomographic images reflect the biologic behavior of small lung adenocarcinoma: they correlate with cell proliferation, microvascularization, cell adhesion, degradation of extracellular matrix, and K-ras mutation. J Thorac Cardiovasc Surg. 2005;130:733–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Shimizu K, Yamada K, Saito H, et al. Surgically curable peripheral lung carcinoma: correlation of thin-section CT findings with histologic prognostic factors and survival. Chest. 2005;127:871–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Okada M, Nishio W, Sakamoto T, et al. Discrepancy of computed tomographic image between lung and mediastinal windows as a prognostic implication in small lung adenocarcinoma. Ann Thorac Surg. 2003;76:1828–32. Discussion 1832.PubMedCrossRefGoogle Scholar
  17. 17.
    Suzuki K, Koike T, Asakawa T, et al. A prospective radiological study of thin-section computed tomography to predict pathological noninvasiveness in peripheral clinical IA lung cancer (Japan Clinical Oncology Group 0201). J Thorac Oncol. 2011;6:751–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Pieterman RM, van Putten JW, Meuzelaar JJ, et al. Preoperative staging of non-small-cell lung cancer with positron-emission tomography. N Engl J Med. 2000;343:254–61.PubMedCrossRefGoogle Scholar
  19. 19.
    Vansteenkiste J, Fischer BM, Dooms C, et al. Positron-emission tomography in prognostic and therapeutic assessment of lung cancer: systematic review. Lancet Oncol. 2004;5:531–40.PubMedCrossRefGoogle Scholar
  20. 20.
    Okada M, Tauchi S, Iwanaga K, et al. Associations among bronchioloalveolar carcinoma components, positron emission tomographic and computed tomographic findings, and malignant behavior in small lung adenocarcinomas. J Thorac Cardiovasc Surg. 2007;133:1448–54.PubMedCrossRefGoogle Scholar
  21. 21.
    Nakayama H, Okumura S, Daisaki H, et al. Value of integrated positron emission tomography revised using a phantom study to evaluate malignancy grade of lung adenocarcinoma: a multicenter study. Cancer. 2010;116:3170–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Nomori H, Watanabe K, Ohtsuka T, et al. Fluorine 18-tagged fluorodeoxyglucose positron emission tomographic scanning to predict lymph node metastasis, invasiveness, or both, in clinical T1 N0 M0 lung adenocarcinoma. J Thorac Cardiovasc Surg. 2004;128:396–401.PubMedCrossRefGoogle Scholar
  23. 23.
    Travis WD, Brambilla E, Muller-Hermelink HK, Harris CC. World Health Organization classification of tumors: pathology and genetics of tumors of the lung, pleura, thymus and heart. Lyon: IARC Press; 2004.Google Scholar
  24. 24.
    Goldstraw P, Crowley J, Chansky K, et al. The IASLC Lung Cancer Staging Project: proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM Classification of malignant tumours. J Thorac Oncol. 2007;2:706–14.PubMedCrossRefGoogle Scholar
  25. 25.
    Suzuki K, Koike T, Asakawa T, et al. A prospective radiological study of thin-section computed tomography to predict pathological noninvasiveness in peripheral clinical IA lung cancer (Japan Clinical Oncology Group 0201). J Thorac Oncol. 2011;6:751–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Ettinger DS, Akerley W, Bepler G, et al. Non-small cell lung cancer. J Natl Compr Canc Netw. 2010;8:740–801.PubMedGoogle Scholar
  27. 27.
    Donington J, Ferguson M, Mazzone P, et al. American College of Chest Physicians and Society of Thoracic Surgeons consensus statement for evaluation and management for high-risk patients with stage I non-small cell lung cancer. Chest. 2012;142:1620–35.PubMedCrossRefGoogle Scholar
  28. 28.
    Gray RJ. A class of K-sample tests for comparing the cumulative incidence of a competing risk. Ann Stat. 1988;16:1141–54.CrossRefGoogle Scholar
  29. 29.
    Okada M, Nishio W, Sakamoto T, et al. Effect of tumor size on prognosis in patients with non-small cell lung cancer: the role of segmentectomy as a type of lesser resection. J Thorac Cardiovasc Surg. 2005;129:87–93.PubMedCrossRefGoogle Scholar
  30. 30.
    Keenan RJ, Landreneau RJ, Maley RH Jr, et al. Segmental resection spares pulmonary function in patients with stage I lung cancer. Ann Thorac Surg. 2004;78:228–33.PubMedCrossRefGoogle Scholar

Copyright information

© Society of Surgical Oncology 2013

Authors and Affiliations

  • Jun-ichi Nitadori
    • 1
  • Adam J. Bograd
    • 1
    • 4
  • Eduardo A. Morales
    • 1
  • Nabil P. Rizk
    • 1
  • Mark P. S. Dunphy
    • 2
  • Camelia S. Sima
    • 3
  • Valerie W. Rusch
    • 1
  • Prasad S. Adusumilli
    • 1
    • 4
    Email author
  1. 1.Division of Thoracic Service, Department of SurgeryMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  2. 2.Division of Nuclear Medicine Service, Department of RadiologyMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  3. 3.Department of Epidemiology and BiostatisticsMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  4. 4.Center for Cell EngineeringMemorial Sloan-Kettering Cancer CenterNew YorkUSA

Personalised recommendations