Annals of Surgical Oncology

, Volume 20, Supplement 3, pp 583–589 | Cite as

Oxidative DNA Damage in Barrett Mucosa: Correlation with Telomeric Dysfunction and p53 Mutation

  • Romilda Cardin
  • Marika Piciocchi
  • Chiara Tieppo
  • Gemma Maddalo
  • Giovanni Zaninotto
  • Claudia Mescoli
  • Massimo Rugge
  • Fabio Farinati
Translational Research and Biomarkers

Abstract

Background

Barrett esophagus develops in a scenario of chronic inflammation, linked to free radical formation and oxidative DNA damage. Eight-hydroxydeoxyguanosine, the main oxidative DNA adduct, is partially repaired by a glycosylase (OGG1) whose polymorphism is associated to a reduced repair capacity. Telomeres are particularly prone to oxidative damage, which leads to shortening and cell senescence, while elongation, by telomerase activity, is linked to cell immortalization and cancer. Limited data are available on this point with respect to Barrett esophagus. This study aimed to evaluate the link among 8-hydroxydeoxyguanosine, OGG1 polymorphism, telomerase activity, telomere length, and p53 mutation in Barrett progression.

Methods

Forty consecutive patients with short- and long-segment Barrett esophagus and 20 controls with gastroesophageal reflux disease without Barrett esophagus were recruited. Analysis of biopsy samples was undertaken to study 8-hydroxydeoxyguanosine levels, OGG1 polymorphism, telomerase activity, and telomere length. Serum samples were obtained for p53 mutation.

Results

Controls had significantly lower levels of 8-hydroxydeoxyguanosine and telomerase activity, with normal telomere length and no p53 mutation. In short-segment Barrett esophagus, 8-hydroxydeoxyguanosine levels were higher and telomeres underwent significant shortening, with stimulation of telomerase activity but no p53 mutations. In long-segment Barrett esophagus, 8-hydroxydeoxyguanosine reached maximal levels, with telomere elongation, and 42 % of the patients showed p53 mutation.

Conclusions

In Barrett patients, with disease progression, oxidative DNA damage accumulates, causing telomere instability, telomerase activation, and, in a late phase, mutations in the p53 gene, thus abrogating its activity as the checkpoint of proliferation and apoptosis, and facilitating progression to cancer.

Notes

Acknowledgment

The authors declare no conflict of interest.

References

  1. 1.
    Barrett NR. The lower esophagus lined by columnar epithelium. Surgery. 1957;41:881–94.PubMedGoogle Scholar
  2. 2.
    Spechler SJ. Clinical practice. Barrett’s esophagus. N Engl J Med. 2002;346:836–42.PubMedCrossRefGoogle Scholar
  3. 3.
    Shaheen N, Ransohoff DF. Gastroesophageal reflux, Barrett esophagus, and esophageal cancer: scientific review. JAMA. 2002;287:1972–81.PubMedCrossRefGoogle Scholar
  4. 4.
    Shaheen NJ, Richter JE. Barrett’s oesophagus. Lancet. 2009;373:850–61.PubMedCrossRefGoogle Scholar
  5. 5.
    Spechler SJ, Sharma P, Souza RF, Inadomi JM, Shaheen NJ; American Gastroenterological Association. American Gastroenterological Association medical position statement on the management of Barrett’s esophagus. Gastroenterology. 2011;140:1084–91.PubMedCrossRefGoogle Scholar
  6. 6.
    Hvid-Jensen F, Pedersen L, Drewes AM, Sorensen HT, Funch-Jensen P. Incidence of adenocarcinoma among patients with Barrett’s esophagus. N Engl J Med. 2011;365:1375–83.PubMedCrossRefGoogle Scholar
  7. 7.
    Wiseman EF, Ang YS. Risk factors for neoplastic progression in Barrett’s esophagus. World J Gastroenterol. 2011;17:3672–83.PubMedCrossRefGoogle Scholar
  8. 8.
    McManus DT, Olaru A, Meltzer SJ. Biomarkers of esophageal adenocarcinoma and Barrett’s esophagus. Cancer Res. 2004;64:1561–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Koppert LB, Wijnhoven BP, van Dekken H, Tilanus HW, Dinjens WN. The molecular biology of esophageal adenocarcinoma. J Surg Oncol. 2005;92:169–90.PubMedCrossRefGoogle Scholar
  10. 10.
    Fang D, Das KM, Cao W, et al. Barrett’s esophagus: progression to adenocarcinoma and markers. Ann N Y Acad Sci. 2011;1232:210–29.PubMedCrossRefGoogle Scholar
  11. 11.
    Olliver JR, Hardie LJ, Gong Y, et al. Risk factors, DNA damage, and disease progression in Barrett’s esophagus. Cancer Epidemiol Biomarkers Prev. 2005;14:620–5.PubMedCrossRefGoogle Scholar
  12. 12.
    Kadioglu E, Sardas S, Ergun M, Unal S, Karakaya AE. The role of oxidative DNA damage, DNA repair, GSTM1, SOD2 and OGG1 polymorphisms in individual susceptibility to Barrett’s esophagus. Toxicol Ind Health. 2010;26:67–79.PubMedCrossRefGoogle Scholar
  13. 13.
    Zhang HY, Zhang Q, Zhang X, et al. Cancer-related inflammation and Barrett’s carcinogenesis: interleukin-6 and STAT3 mediate apoptotic resistance in transformed Barrett’s cells. Am J Physiol Gastrointest Liver Physiol. 2011;300:G454–60.PubMedCrossRefGoogle Scholar
  14. 14.
    Klaunig JE, Kamendulis LM, Hocevar BA. Oxidative stress and oxidative damage in carcinogenesis. Toxicol Pathol. 2010;38:96–109.PubMedCrossRefGoogle Scholar
  15. 15.
    Shinmura K, Yokota J. The OGG1 gene encodes a repair enzyme for oxidatively damaged DNA and is involved in human carcinogenesis. Antioxid Redox Signal. 2001;3:597–609.PubMedCrossRefGoogle Scholar
  16. 16.
    Lee JS, Oh TY, Ahn BO, et al. Involvement of oxidative stress in experimentally induced reflux esophagitis and Barrett’s esophagus: clue for the chemoprevention of esophageal carcinoma by antioxidants. Mutat Res. 2001;480–1:189–200.CrossRefGoogle Scholar
  17. 17.
    Rasanen JV, Sihvo EI, Ahotupa MO, Farkkila MA, Salo JA. The expression of 8-hydroxydeoxyguanosine in oesophageal tissues and tumours. Eur J Surg Oncol. 2007;33:1164–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Dvorak K, Payne CM, Chavarria M, et al. Bile acids in combination with low pH induce oxidative stress and oxidative DNA damage: relevance to the pathogenesis of Barrett’s oesophagus. Gut. 2007;56:763–71.PubMedCrossRefGoogle Scholar
  19. 19.
    De Ceglie A, Fisher DA, Filiberti R, Blanchi S, Conio M. Barrett’s esophagus, esophageal and esophagogastric junction adenocarcinomas: the role of diet. Clin Res Hepatol Gastroenterol. 2011;35:7–16.PubMedCrossRefGoogle Scholar
  20. 20.
    Farinati F, Cardin R, Russo VM, et al. Differential effects of Helicobacter pylori eradication on oxidative DNA damage at the gastroesophageal junction and at the gastric antrum. Cancer Epidemiol Biomarkers Prev. 2004;13:1722–8.PubMedGoogle Scholar
  21. 21.
    Farinati F, Cardin R, Cassaro M, et al. Helicobacter pylori, inflammation, oxidative damage and gastric cancer: a morphological, biological and molecular pathway. Eur J Cancer Prev. 2008;17:195–200.PubMedCrossRefGoogle Scholar
  22. 22.
    Rudolph KL, Hartmann D, Opitz OG. Telomere dysfunction and DNA damage checkpoints in diseases and cancer of the gastrointestinal tract. Gastroenterology. 2009;137:754–62.PubMedCrossRefGoogle Scholar
  23. 23.
    Artandi SE, DePinho RA. Telomeres and telomerase in cancer. Carcinogenesis. 2010;31:9–18.PubMedCrossRefGoogle Scholar
  24. 24.
    Maser RS, DePinho RA. Connecting chromosomes, crisis, and cancer. Science. 2002;297:565–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Shay JW, Wright WE. Role of telomeres and telomerase in cancer. Semin Cancer Biol. 2011;21:349–53.PubMedCrossRefGoogle Scholar
  26. 26.
    Sharma P, Dent J, Armstrong D, et al. The development and validation of an endoscopic grading system for Barrett’s esophagus: the Prague C & M criteria. Gastroenterology. 2006;131:1392–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Zaninotto G, Minnei F, Guirroli E, et al. The Veneto Region’s Barrett’s oesophagus registry: aims, methods, preliminary results. Dig Liver Dis. 2007;39:18–25.PubMedCrossRefGoogle Scholar
  28. 28.
    Schlemper RJ, Riddell RH, Kato Y, et al. The Vienna classification of gastrointestinal epithelial neoplasia. Gut. 2000;47:251–5.PubMedCrossRefGoogle Scholar
  29. 29.
    Romilda C, Marika P, Alessandro S, et al. Oxidative DNA damage correlates with cell immortalization and mir-92 expression in hepatocellular carcinoma. BMC Cancer. 2012;12:177–85.PubMedCrossRefGoogle Scholar
  30. 30.
    Kohno T, Shinmura K, Tosaka M, et al. Genetic polymorphisms and alternative splicing of the hOGG1 gene, that is involved in the repair of 8-hydroxyguanine in damaged DNA. Oncogene. 1998;16:3219–25.PubMedCrossRefGoogle Scholar
  31. 31.
    Cawthon RM. Telomere measurement by quantitative PCR. Nucl Acids Res. 2002;30:e47.PubMedCrossRefGoogle Scholar
  32. 32.
    Farinati F, Piciocchi M, Lavezzo E, Bortolami M, Cardin R. Oxidative stress and inducible nitric oxide synthase induction in carcinogenesis. Dig Dis. 2010;28:579–84.PubMedCrossRefGoogle Scholar
  33. 33.
    Ide H, Kotera M. Human DNA glycosylases involved in the repair of oxidatively damaged DNA. Biol Pharm Bull. 2004;27:480–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Farinati F, Cardin R, Bortolami M, et al. Oxidative DNA damage in gastric cancer: CagA status and OGG1 gene polymorphism. Int J Cancer. 2008;123:51–5.PubMedCrossRefGoogle Scholar
  35. 35.
    Ferguson LR, Laing WA. Chronic inflammation, mutation and human disease. Mutat Res. 2010;690:1–2.PubMedCrossRefGoogle Scholar
  36. 36.
    Bartsch H, Nair J. Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer: role of lipid peroxidation, DNA damage, and repair. Langenbecks Arch Surg. 2006;391:499–510.PubMedCrossRefGoogle Scholar
  37. 37.
    Kuchino Y, Mori F, Kasai H, et al. Misreading of DNA templates containing 8-hydroxydeoxyguanosine at the modified base and at adjacent residues. Nature. 1987;327:77–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Fruehauf JP, Meyskens FL Jr. Reactive oxygen species: a breath of life or death? Clin Cancer Res. 2007;13:789–94.PubMedCrossRefGoogle Scholar
  39. 39.
    Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J. Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem. 2004;266:37–56.PubMedCrossRefGoogle Scholar
  40. 40.
    Ock CY, Kim EH, Choi DJ, Lee HJ, Hahm KB, Chung MH. 8-Hydroxydeoxyguanosine: not mere biomarker for oxidative stress, but remedy for oxidative stress–implicated gastrointestinal diseases. World J Gastroenterol. 2012;18:302–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Savarino E, Zentilin P, Frazzoni M, et al. Characteristics of gastro-esophageal reflux episodes in Barrett’s esophagus, erosive esophagitis and healthy volunteers. Neurogastroenterol Motil. 2010;22:1061-e280.Google Scholar
  42. 42.
    Thrift AP, Kendall BJ, Pandeya N, Vaughan TL, Whiteman DC; Study of digestive health. A clinical risk prediction model for Barrett esophagus. Cancer Prev Res (Phila). 2012;5:1115–23.PubMedCrossRefGoogle Scholar
  43. 43.
    Thanan R, Ma N, Iijima K, et al. Proton pump inhibitors suppress iNOS-dependent DNA damage in Barrett’s esophagus by increasing Mn-SOD expression. Biochem Biophys Res Commun. 2012;421:280–5.PubMedCrossRefGoogle Scholar
  44. 44.
    Oikawa S, Kawanishi S. Site-specific DNA damage at GGG sequence by oxidative stress may accelerate telomere shortening. FEBS Lett. 1999;453:365–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Gertler R, Doll D, Maak M, Feith M, Rosenberg R. Telomere length and telomerase subunits as diagnostic and prognostic biomarkers in Barrett carcinoma. Cancer. 2008;112:2173–80.PubMedCrossRefGoogle Scholar
  46. 46.
    Finley JC, Reid BJ, Odze RD, et al. Chromosomal instability in Barrett’s esophagus is related to telomere shortening. Cancer Epidemiol Biomarkers Prev. 2006;15:1451–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Vurusaner B, Poli G, Basaga H. Tumor suppressor genes and ROS: complex networks of interactions. Free Radic Biol Med. 2012;52:7–18.PubMedCrossRefGoogle Scholar
  48. 48.
    Shields HM, Nardone G, Zhao J, et al. Barrett’s esophagus: prevalence and incidence of adenocarcinomas. Ann N Y Acad Sci. 2011;1232:230–47.PubMedCrossRefGoogle Scholar
  49. 49.
    Soussi T. The humoral response to the tumor-suppressor gene-product p53 in human cancer: implications for diagnosis and therapy. Immunol Today. 1996;17:354–6.PubMedCrossRefGoogle Scholar
  50. 50.
    Famulski W, Sulkowska M, Wincewicz A, et al. P53 correlates positively with VEGF in preoperative sera of colorectal cancer patients. Neoplasma. 2006;53:43–8.PubMedGoogle Scholar
  51. 51.
    Dobrzycka B, Terlikowski SJ, Kinalski M, Kowalczuk O, Niklinska W, Chyczewski L. Circulating free DNA and p53 antibodies in plasma of patients with ovarian epithelial cancers. Ann Oncol. 2011;22:1133–40.PubMedCrossRefGoogle Scholar
  52. 52.
    Lubin R, Zalcman G, Bouchet L, et al. Serum p53 antibodies as early markers of lung cancer. Nat Med. 1995;1:701–2.PubMedCrossRefGoogle Scholar
  53. 53.
    Broll R, Duchrow M, Oevermann E, et al. p53 autoantibodies in sera of patients with a colorectal cancer and their association to p53 protein concentration and p53 immunohistochemistry in tumor tissue. Int J Colorectal Dis. 2001;16:22–7.PubMedCrossRefGoogle Scholar

Copyright information

© Society of Surgical Oncology 2013

Authors and Affiliations

  • Romilda Cardin
    • 1
  • Marika Piciocchi
    • 1
  • Chiara Tieppo
    • 1
  • Gemma Maddalo
    • 2
  • Giovanni Zaninotto
    • 1
  • Claudia Mescoli
    • 3
  • Massimo Rugge
    • 3
  • Fabio Farinati
    • 1
  1. 1.Section of Gastroenterology, Department of Surgery, Oncology and GastroenterologyPadua UniversityPaduaItaly
  2. 2.Venetian Institute of Oncology (Istituto Oncologico Veneto (IOV), IRCCS)PaduaItaly
  3. 3.Pathology and Cytopathology Unit, Department of MedicinePadua UniversityPaduaItaly

Personalised recommendations