Annals of Surgical Oncology

, Volume 18, Issue 13, pp 3694–3700 | Cite as

Molecular Profiling of Colon Tumors: The Search for Clinically Relevant Biomarkers of Progression, Prognosis, Therapeutics, and Predisposition

Colorectal Cancer

Abstract

If properly translated to clinical use, our knowledge about biomarkers may lead to a more effective way of combating colorectal cancer (CRC). Biomarkers are biomolecular, genetic, or cytogenetic attributes indicative of the disease’s progression, predisposition, prognosis, or therapeutic options. For CRC, these include chromosomal instability, mutations in KRAS and TP53, loss of 18q, and elevated level of carcinoembryonic antigen (CEA), which are all associated with poor prognosis. The prognostic significance of 18q loss can be attributed to reduced expression of SMAD4, or DCC, although the chromosomal arm is actually heavily populated by genes whose downregulation correlate to worse survival. Potentially, identification of prognostic biomarkers can help the oncologist decide whether adjuvant chemotherapy is necessary after surgery. Testing for therapeutic biomarkers can be necessary if targeted therapeutics are being considered. The identification of highly penetrant predisposition markers (such as mutations in APC and MLH1) can be a lifesaver for carrier individuals, who would then have to undergo colonoscopy at an earlier age. Even sporadic CRCs may have some hereditary components, according to recent studies. Genome-wide association studies (using SNP arrays) showed that polymorphisms of certain genes can have subtle influence on CRC predisposition. Our own SNP array-based analysis suggested that long stretches of germline homozygosity (autozygosity), indicative of consanguinity, may also factor in CRC predisposition.

References

  1. 1.
    Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108.PubMedCrossRefGoogle Scholar
  2. 2.
    Ahmed FE. Colon cancer: prevalence, screening, gene expression and mutation, and risk factors and assessment. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2003;21:65–131.PubMedGoogle Scholar
  3. 3.
    Lynch HT, Lynch JF, Lynch PM, Attard T. Hereditary colorectal cancer syndromes: molecular genetics, genetic counseling, diagnosis and management. Fam Cancer. 2008;7:27−39.PubMedCrossRefGoogle Scholar
  4. 4.
    Lengauer C, Kinzler KW, Vogelstein B. Genetic instability in colorectal cancers. Nature. 1997;386:623–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Eshleman JR, Markowitz SD. Microsatellite instability in inherited and sporadic neoplasms. Curr Opin Oncol. 1995;7:83–9.PubMedGoogle Scholar
  6. 6.
    Cheng YW, Pincas H, Bacolod MD, Schemmann G. Giardina SF, Huang J, et al. CpG island methylator phenotype associates with low-degree chromosomal abnormalities in colorectal cancer. Clin Cancer Res. 2008;14:6005–13.PubMedCrossRefGoogle Scholar
  7. 7.
    Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61:759–67.PubMedCrossRefGoogle Scholar
  8. 8.
    Behrens J. The role of the Wnt signalling pathway in colorectal tumorigenesis. Biochem Soc Trans. 2005;33:672–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Fearnhead NS, Britton MP, Bodmer WF. The ABC of APC. Hum Mol Genet. 2001;10:721–33.PubMedCrossRefGoogle Scholar
  10. 10.
    Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, et al. The consensus coding sequences of human breast and colorectal cancers. Science. 2006;314:268–74.PubMedCrossRefGoogle Scholar
  11. 11.
    Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ, et al. The genomic landscapes of human breast and colorectal cancers. Science. 2007;318:1108–13.PubMedCrossRefGoogle Scholar
  12. 12.
    Kane MF, Loda M, Gaida GM, Lipman J, Mishra R, Goldman H, et al. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res. 1997;57:808–11.PubMedGoogle Scholar
  13. 13.
    Jung B, Smith EJ, Doctolero RT, Gervaz P, Alonso JC, Miyai K, et al. Influence of target gene mutations on survival, stage and histology in sporadic microsatellite unstable colon cancers. Int J Cancer. 2006;118:2509–13.PubMedCrossRefGoogle Scholar
  14. 14.
    McGivern A, Wynter CV, Whitehall VL, Kambara T, Spring KJ, Walsh MD, et al. Promoter hypermethylation frequency and BRAF mutations distinguish hereditary non-polyposis colon cancer from sporadic MSI-H colon cancer. Fam Cancer. 2004;3:101–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Nannini M, Pantaleo MA, Maleddu A, Astolfi A, Formica S, Biasco G. Gene expression profiling in colorectal cancer using microarray technologies: results and perspectives. Cancer Treat Rev. 2009;35:201–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Dunican DS, McWilliam P, Tighe O, Parle-McDermott A, Croke DT. Gene expression differences between the microsatellite instability (MIN) and chromosomal instability (CIN) phenotypes in colorectal cancer revealed by high-density cDNA array hybridization. Oncogene. 2002;21:3253–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Diep CB, Kleivi K, Ribeiro FR, Teixeira MR, Lindgjaerde OC, Lothe RA. The order of genetic events associated with colorectal cancer progression inferred from meta-analysis of copy number changes. Genes Chromosomes Cancer. 2006;45:31–41.PubMedCrossRefGoogle Scholar
  18. 18.
    Nakao K, Mehta KR, Fridlyand J, Moore DH, Jain AN, Lafuente A, et al. High-resolution analysis of DNA copy number alterations in colorectal cancer by array-based comparative genomic hybridization. Carcinogenesis. 2004;25:1345–57.PubMedCrossRefGoogle Scholar
  19. 19.
    Sheffer M, Bacolod MD, Zuk O, Giardina SF, Pincas H, Barany F, et al. Association of survival and disease progression with chromosomal instability: a genomic exploration of colorectal cancer. Proc Natl Acad Sci USA. 2009;106:7131–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Tsafrir D, Bacolod M, Selvanayagam Z, Tsafrir I, Shia J, Zeng Z, et al. Relationship of gene expression and chromosomal abnormalities in colorectal cancer. Cancer Res. 2006;66:2129–37.PubMedCrossRefGoogle Scholar
  21. 21.
    Bacolod MD, Schemmann GS, Giardina SF, Paty P, Notterman DA, Barany F. Emerging paradigms in cancer genetics: some important findings from high density SNP array studies. Cancer Res. 2009;69:723–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Andersen CL, Wiuf C, Kruhoffer M, Korsgaard M, Laurberg S, Orntoft TF. Frequent occurrence of uniparental disomy in colorectal cancer. Carcinogenesis. 2007;28:38–48.PubMedCrossRefGoogle Scholar
  23. 23.
    Locker GY, Hamilton S, Harris J, Jessup JM, Kemeny N, Macdonald JS, et al. ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J Clin Oncol. 2006;24:5313–27.PubMedCrossRefGoogle Scholar
  24. 24.
    Gunderson LL, Jessup JM, Sargent DJ, Greene FL, Stewart AK. Revised TN categorization for colon cancer based on national survival outcomes data. J Clin Oncol. 28:264−71.Google Scholar
  25. 25.
    Gunderson LL, Jessup JM, Sargent DJ, Greene FL, Stewart A. Revised tumor and node categorization for rectal cancer based on surveillance, epidemiology, and end results and rectal pooled analysis outcomes. J Clin Oncol. 28:256–63.Google Scholar
  26. 26.
    Mutch MG. Molecular profiling and risk stratification of adenocarcinoma of the colon. J Surg Oncol. 2007;96:693–703.PubMedCrossRefGoogle Scholar
  27. 27.
    Andre T, Boni C, Navarro M, Tabernero J, Hickish T, Topham C, et al. Improved overall survival with oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment in stage II or III colon cancer in the MOSAIC trial. J Clin Oncol. 2009;27:3109–16.PubMedCrossRefGoogle Scholar
  28. 28.
    Bokemeyer C, Bondarenko I, Makhson A, Hartmann JT, Aparicio J, de Braud F, et al. Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J Clin Oncol. 2009;27:663–71.PubMedCrossRefGoogle Scholar
  29. 29.
    Falcone A, Ricci S, Brunetti I, Pfanner E, Allegrini G, Barbara C, et al. Phase III trial of infusional fluorouracil, leucovorin, oxaliplatin, and irinotecan (FOLFOXIRI) compared with infusional fluorouracil, leucovorin, and irinotecan (FOLFIRI) as first-line treatment for metastatic colorectal cancer: the Gruppo Oncologico Nord Ovest. J Clin Oncol. 2007;25:1670–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Barrier A, Boelle PY, Roser F, Gregg J, Tse C, Brault D, et al. Stage II colon cancer prognosis prediction by tumor gene expression profiling. J Clin Oncol. 2006;24:4685–91.PubMedCrossRefGoogle Scholar
  31. 31.
    Arango D, Laiho P, Kokko A, Alhopuro P, Sammalkorpi H, Salovaara R, et al. Gene-expression profiling predicts recurrence in Dukes’ C colorectal cancer. Gastroenterology. 2005;129:874–84.PubMedCrossRefGoogle Scholar
  32. 32.
    Wang Y, Jatkoe T, Zhang Y, Mutch MG, Talantov D, Jiang J, et al. Gene expression profiles and molecular markers to predict recurrence of Dukes’ B colon cancer. J Clin Oncol. 2004;22:1564–71.PubMedCrossRefGoogle Scholar
  33. 33.
    O’Connell MJ, Lavery I, Yothers G, Paik S, Clark-Langone KM, Lopatin M, et al. Relationship between tumor gene expression and recurrence in four independent studies of patients with stage II/III colon cancer treated with surgery alone or surgery plus adjuvant fluorouracil plus leucovorin. J Clin Oncol. 2010;28:3937–44.PubMedCrossRefGoogle Scholar
  34. 34.
    Gray R, Barnwell J, McConkey C, Barnwell J. Adjuvant chemotherapy versus observation in patients with colorectal cancer: a randomised study. Lancet. 2007;370:2020–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Webber EM, Lin JS, Evelyn PW. Oncotype DX tumor gene expression profiling in stage II colon cancer. Application: prognostic, risk prediction. PLoS Curr. 2010;2.Google Scholar
  36. 36.
    Popat S, Hubner R, Houlston RS. Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol. 2005;23:609–18.PubMedCrossRefGoogle Scholar
  37. 37.
    Guastadisegni C, Colafranceschi M, Ottini L, Dogliotti E. Microsatellite instability as a marker of prognosis and response to therapy: a meta-analysis of colorectal cancer survival data. Eur J Cancer. 2010;46:2788–98.PubMedCrossRefGoogle Scholar
  38. 38.
    Ribic CM, Sargent DJ, Moore MJ, Thibodeau SN, French AJ, Goldberg RM, et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med. 2003;349:247–57.PubMedCrossRefGoogle Scholar
  39. 39.
    Sargent DJ, Marsoni S, Monges G, Thibodeau SN, Labianca R, Hamilton SR, et al. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J Clin Oncol. 2010;28:3219–26.PubMedCrossRefGoogle Scholar
  40. 40.
    Kim ST, Lee J, Park SH, Park JO, Lim HY, Kang WK, et al. Clinical impact of microsatellite instability in colon cancer following adjuvant FOLFOX therapy. Cancer Chemother Pharmacol. 2010;66:659–67.PubMedCrossRefGoogle Scholar
  41. 41.
    Ng K, Schrag D. Microsatellite instability and adjuvant fluorouracil chemotherapy: a mismatch? J Clin Oncol. 2010;28:3207–10.PubMedCrossRefGoogle Scholar
  42. 42.
    Bacolod MD, Barany F. Gene dysregulations driven by somatic copy number aberrations-biological and clinical implications in colon tumors. A paper from the 2009 William Beaumont Hospital Symposium on Molecular Pathology. J Mol Diagn. 2010;12:552–61.PubMedCrossRefGoogle Scholar
  43. 43.
    Lanza G, Matteuzzi M, Gafa R, Orvieto E, Maestri I, Santini A, et al. Chromosome 18q allelic loss and prognosis in stage II and III colon cancer. Int J Cancer. 1998;79:390–5.PubMedCrossRefGoogle Scholar
  44. 44.
    Watanabe T, Wu TT, Catalano PJ, Ueki T, Satriano R, Haller DG, et al. Molecular predictors of survival after adjuvant chemotherapy for colon cancer. N Engl J Med. 2001;344:1196–206.PubMedCrossRefGoogle Scholar
  45. 45.
    Benson AB, 3rd. New approaches to assessing and treating early-stage colon and rectal cancers: cooperative group strategies for assessing optimal approaches in early-stage disease. Clin Cancer Res. 2007;13:6913s–20s.PubMedCrossRefGoogle Scholar
  46. 46.
    Tarafa G, Villanueva A, Farre L, Rodriguez J, Musulen E, Reyes G, et al. DCC and SMAD4 alterations in human colorectal and pancreatic tumor dissemination. Oncogene. 2000;19:546–55.PubMedCrossRefGoogle Scholar
  47. 47.
    Fearon ER, Cho KR, Nigro JM, Kern SE, Simons JW, Ruppert JM, et al. Identification of a chromosome 18q gene that is altered in colorectal cancers. Science. 1990;247:49–56.PubMedCrossRefGoogle Scholar
  48. 48.
    Shin YK, Yoo BC, Chang HJ, Jeon E, Hong SH, Jung MS, et al. Down-regulation of mitochondrial F1F0-ATP synthase in human colon cancer cells with induced 5-fluorouracil resistance. Cancer Res. 2005;65:3162–70.PubMedGoogle Scholar
  49. 49.
    Liu XP, Kawauchi S, Oga A, Sato T, Ikemoto K, Ikeda E, et al. Chromosomal aberrations detected by comparative genomic hybridization predict outcome in patients with colorectal carcinoma. Oncol Rep. 2007;17:261–7.PubMedGoogle Scholar
  50. 50.
    Al-Mulla F, Behbehani AI, Bitar MS, Varadharaj G, Going JJ. Genetic profiling of stage I and II colorectal cancer may predict metastatic relapse. Mod Pathol. 2006;19:648–58.PubMedCrossRefGoogle Scholar
  51. 51.
    Zuern C, Heimrich J, Kaufmann R, Richter KK, Settmacher U, Wanner C, et al. Down-regulation of MTUS1 in human colon tumors. Oncol Rep. 2010;23:183–9.PubMedGoogle Scholar
  52. 52.
    Rodrigues-Ferreira S, Di Tommaso A, Dimitrov A, Cazaubon S, Gruel N, Colasson H, et al. (2009) 8p22 MTUS1 gene product ATIP3 is a novel anti-mitotic protein underexpressed in invasive breast carcinoma of poor prognosis. PLoS One. 4:e7239.PubMedCrossRefGoogle Scholar
  53. 53.
    Seibold S, Rudroff C, Weber M, Galle J, Wanner C, Marx M. Identification of a new tumor suppressor gene located at chromosome 8p21.3-22. FASEB J. 2003;17:1180–2.PubMedGoogle Scholar
  54. 54.
    Westermarck J, Hahn WC. Multiple pathways regulated by the tumor suppressor PP2A in transformation. Trends Mol Med. 2008;14:152–60.PubMedCrossRefGoogle Scholar
  55. 55.
    Tol J, Punt CJ. Monoclonal antibodies in the treatment of metastatic colorectal cancer: a review. Clin Ther. 2010;32:437–53.PubMedCrossRefGoogle Scholar
  56. 56.
    Modjtahedi H, Essapen S. Epidermal growth factor receptor inhibitors in cancer treatment: advances, challenges and opportunities. Anticancer Drugs. 2009;20:851–5.PubMedCrossRefGoogle Scholar
  57. 57.
    Allegra CJ, Jessup JM, Somerfield MR, Hamilton SR, Hammond EH, Hayes DF, et al. American Society of Clinical Oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy. J Clin Oncol. 2009;27:2091–6.PubMedCrossRefGoogle Scholar
  58. 58.
    Laurent-Puig P, Cayre A, Manceau G, Buc E, Bachet JB, Lecomte T, et al. Analysis of PTEN, BRAF, and EGFR status in determining benefit from cetuximab therapy in wild-type KRAS metastatic colon cancer. J Clin Oncol. 2009;27:5924–30.PubMedCrossRefGoogle Scholar
  59. 59.
    Waldner MJ, Neurath MF. The molecular therapy of colorectal cancer. Mol Aspects Med. 2010;31:171–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Tenesa A, Dunlop MG. New insights into the aetiology of colorectal cancer from genome-wide association studies. Nat Rev Genet. 2009;10:353–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Venkatachalam R, Ligtenberg MJ, Hoogerbrugge N, Geurts van Kessel A, Kuiper RP. Predisposition to colorectal cancer: exploiting copy number variation to identify novel predisposing genes and mechanisms. Cytogenet Genome Res. 2008;123:188–94.PubMedCrossRefGoogle Scholar
  62. 62.
    Bacolod MD, Schemmann GS, Wang S, Shattock R, Giardina SF, Zeng Z, et al. The signatures of autozygosity among patients with colorectal cancer. Cancer Res. 2008;68:2610–21.PubMedCrossRefGoogle Scholar

Copyright information

© Society of Surgical Oncology 2011

Authors and Affiliations

  1. 1.Department of Microbiology and ImmunologyWeill Cornell Medical CollegeNew YorkUSA
  2. 2.Personalized Cancer Medicine PartnershipBrigham and Women’s HospitalBostonUSA

Personalised recommendations