Skip to main content

Advertisement

Log in

Salinomycin Selectively Targets ‘CD133+’ Cell Subpopulations and Decreases Malignant Traits in Colorectal Cancer Lines

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Cancer stem-like cells (CSCs) in colorectal cancers (CRC) may account for the failure of treatments because they are resistant to many current anticancer therapies. Salinomycin, a potassium ionophore, was recently identified as a selective inhibitor of breast CSCs.

Methods

The human CRC cell lines HT29 and SW480 were treated with salinomycin and oxaliplatin. Cell viability was determined with cell counting kit 8. Fraction of CD133+ cell subpopulations was assessed by Flow Cytometric analysis. Clonogenecity and migration were determined with soft agar and Boyden chamber assays. Molecular changes were assessed by immunofluorescence staining, RT-PCR, and Western blot analysis.

Results

We report that salinomycin reduces the proportion of CD133+ subpopulations in human CRC HT29 and SW480 cells. Furthermore, salinomycin treatment decreases colony-forming ability and cell motility in HT29 cells. Moreover, salinomycin downregulates the expression of vimentin and induces the E-cadherin expression in HT29 cells.

Conclusions

This study demonstrates the ability of salinomycin to selectively target “CD133+” cell subpopulations and decrease the malignant traits in colorectal cancer lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445(7123):106–10.

    Article  PubMed  Google Scholar 

  2. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445(7123):111–5.

    Article  PubMed  CAS  Google Scholar 

  3. Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW, Hoey T, Gurney A, Huang EH, Simeone DM, et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA. 2007;104(24):10158–63.

    Article  PubMed  CAS  Google Scholar 

  4. Ieta K, Tanaka F, Haraguchi N, Kita Y, Sakashita H, Mimori K, Matsumoto T, Inoue H, Kuwano H, Mori M. Biological and genetic characteristics of tumor-initiating cells in colon cancer. Ann Surg Oncol. 2008;15(2):638–48.

    Article  PubMed  Google Scholar 

  5. Haraguchi N, Ohkuma M, Sakashita H, Matsuzaki S, Tanaka F, Mimori K, Kamohara Y, Inoue H, Mori M. CD133+ CD44+ population efficiently enriches colon cancer initiating cells. Ann Surg Oncol. 2008;15(10):2927–33.

    Article  PubMed  Google Scholar 

  6. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756–60.

    Article  PubMed  CAS  Google Scholar 

  7. Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer. 2005;5(4):275–84.

    Article  PubMed  CAS  Google Scholar 

  8. Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, Qian D, Lam JS, Ailles LE, Wong M, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 2009;458(7239):780–3.

    Article  PubMed  CAS  Google Scholar 

  9. Diehn M, Clarke MF. Cancer stem cells and radiotherapy: new insights into tumor radioresistance. J Natl Cancer Inst. 2006;98(24):1755–7.

    Article  PubMed  Google Scholar 

  10. Eyler CE, Rich JN. Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol. 2008;26(17):2839–45.

    Article  PubMed  CAS  Google Scholar 

  11. Todaro M, Alea MP, Di Stefano AB, Cammareri P, Vermeulen L, Iovino F, Tripodo C, Russo A, Gulotta G, Medema JP, et al. Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell. 2007;1(4):389–402.

    Article  PubMed  CAS  Google Scholar 

  12. Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, Lander ES. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 2009;138(4):645–59.

    Article  PubMed  CAS  Google Scholar 

  13. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133(4):704–15.

    Article  PubMed  CAS  Google Scholar 

  14. Yang AD, Fan F, Camp ER, van Buren G, Liu W, Somcio R, Gray MJ, Cheng H, Hoff PM, Ellis LM. Chronic oxaliplatin resistance induces epithelial-to-mesenchymal transition in colorectal cancer cell lines. Clin Cancer Res. 2006;12(14 Pt 1):4147–53.

    Article  PubMed  CAS  Google Scholar 

  15. Wellner U, Schubert J, Burk UC, Schmalhofer O, Zhu F, Sonntag A, Waldvogel B, Vannier C, Darling D, zur Hausen A, et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol. 2009;11(12):1487–95.

    Article  PubMed  CAS  Google Scholar 

  16. Neuzil J, Stantic M, Zobalova R, Chladova J, Wang X, Prochazka L, Dong L, Andera L, Ralph SJ. Tumour-initiating cells vs. cancer ‘stem’ cells and CD133: what’s in the name? Biochem Biophys Res Commun. 2007;355(4):855–9.

    Article  PubMed  CAS  Google Scholar 

  17. Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res. 2008;68(10):3645–54.

    Article  PubMed  CAS  Google Scholar 

  18. Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009;9(4):265–73.

    Article  PubMed  CAS  Google Scholar 

  19. Ong CW, Kim LG, Kong HH, Low LY, Iacopetta B, Soong R, Salto-Tellez M. CD133 expression predicts for non-response to chemotherapy in colorectal cancer. Mod Pathol. 23(3):450–7.

  20. Saigusa S, Tanaka K, Toiyama Y, Yokoe T, Okugawa Y, Ioue Y, Miki C, Kusunoki M. Correlation of CD133, OCT4, and SOX2 in rectal cancer and their association with distant recurrence after chemoradiotherapy. Ann Surg Oncol. 2009;16(12):3488–98.

    Article  PubMed  Google Scholar 

  21. Artells R, Moreno I, Diaz T, Martinez F, Gel B, Navarro A, Ibeas R, Moreno J, Monzo M. Tumour CD133 mRNA expression and clinical outcome in surgically resected colorectal cancer patients. Eur J Cancer. 2010;46(3):642–9.

    Google Scholar 

  22. Corbeil D, Roper K, Hellwig A, Tavian M, Miraglia S, Watt SM, Simmons PJ, Peault B, Buck DW, Huttner WB. The human AC133 hematopoietic stem cell antigen is also expressed in epithelial cells and targeted to plasma membrane protrusions. J Biol Chem. 2000;275(8):5512–20.

    Article  PubMed  CAS  Google Scholar 

  23. Giebel B, Corbeil D, Beckmann J, Hohn J, Freund D, Giesen K, Fischer J, Kogler G, Wernet P. Segregation of lipid raft markers including CD133 in polarized human hematopoietic stem and progenitor cells. Blood. 2004;104(8):2332–8.

    Article  PubMed  CAS  Google Scholar 

  24. Elsaba TM, Martinez-Pomares L, Robins AR, Crook S, Seth R, Jackson D, McCart A, Silver AR, Tomlinson IP, Ilyas M. The stem cell marker CD133 associates with enhanced colony formation and cell motility in colorectal cancer. PLoS One. 2010;5(5):e10714.

    Article  PubMed  Google Scholar 

  25. Rappa G, Fodstad O, Lorico A. The stem cell-associated antigen CD133 (Prominin-1) is a molecular therapeutic target for metastatic melanoma. Stem Cells. 2008;26(12):3008–17.

    Article  Google Scholar 

  26. Fuchs D, Heinold A, Opelz G, Daniel V, Naujokat C. Salinomycin induces apoptosis and overcomes apoptosis resistance in human cancer cells. Biochem Biophys Res Commun. 2009;390(3):743–9.

    Article  PubMed  CAS  Google Scholar 

  27. Riccioni R, Dupuis ML, Bernabei M, Petrucci E, Pasquini L, Mariani G, Cianfriglia M, Testa U. The cancer stem cell selective inhibitor salinomycin is a p-glycoprotein inhibitor. Blood Cells Mol Dis. 2010;45(1):86–92.

    Google Scholar 

  28. Fuchs D, Daniel V, Sadeghi M, Opelz G, Naujokat C. Salinomycin overcomes ABC transporter-mediated multidrug and apoptosis resistance in human leukemia stem cell-like KG-1a cells. Biochem Biophys Res Commun. 2010;394(4):1098–104.

    Google Scholar 

  29. Yvore P, Raynaud JP, Conan L, Naciri M. Evaluation of the efficacy of salinomycin in the control of coccidiosis in chicks. Poult Sci. 1980;59(11):2412–6.

    PubMed  CAS  Google Scholar 

  30. Callaway TR, Edrington TS, Rychlik JL, Genovese KJ, Poole TL, Jung YS, Bischoff KM, Anderson RC, Nisbet DJ. Ionophores: their use as ruminant growth promotants and impact on food safety. Curr Issues Intest Microbiol. 2003;4(2):43–51.

    PubMed  CAS  Google Scholar 

  31. Li Y, Fang J, Wu S, Ma K, Li H, Yan X, Dong F. Identification and quantification of salinomycin in intoxicated human plasma by liquid chromatography-electrospray tandem mass spectrometry. Anal Bioanal Chem. 2010;398(2):955–61.

    Google Scholar 

  32. Story P, Doube A. A case of human poisoning by salinomycin, an agricultural antibiotic. N Z Med J. 2004;117(1190):U799.

    PubMed  Google Scholar 

  33. Kojima M, Ishii G, Atsumi N, Nishizawa Y, Saito N, Ochiai A. CD133 expression in rectal cancer after preoperative chemoradiotherapy. Cancer Sci. 2010;101(4):906–12.

    Google Scholar 

  34. Lazebnik Y. What are the hallmarks of cancer? Nat Rev Cancer. 2010;10(4):232–3.

    Article  PubMed  CAS  Google Scholar 

  35. Weinberg RA. The rational treatment of cancer. In: Zayatz E, editor. The biology of cancer. New York: Garland Science; 2007. p. 787–94.

    Google Scholar 

Download references

Acknowledgment

This study was supported by the National Natural Science Foundation (No. 30901424) and the Leading Medical Talent Foundation of Shanghai Municipality (No. LJ06038). We thank the members of Bing-Ya Liu’s laboratory for helpful comments and discussions, Dr. Zhi-Qiang Chen for reagents, and Xiao-Shuang Yan for technical help.

Disclosure

This study was supported by the National Natural Science Foundation (No. 30901424) and the Leading Medical Talent Foundation of Shanghai Municipality (No. LJ06038). The authors declared no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Hua Zheng.

Additional information

Tao-Tao Dong and Hou-Min Zhou contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, TT., Zhou, HM., Wang, LL. et al. Salinomycin Selectively Targets ‘CD133+’ Cell Subpopulations and Decreases Malignant Traits in Colorectal Cancer Lines. Ann Surg Oncol 18, 1797–1804 (2011). https://doi.org/10.1245/s10434-011-1561-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-011-1561-2

Keywords

Navigation