Annals of Surgical Oncology

, Volume 18, Issue 5, pp 1484–1491 | Cite as

Using Gene Expression Profiling to Predict Response and Prognosis in Gastrointestinal Cancers—The Promise and the Perils

  • Kate H. Brettingham-Moore
  • Cuong P. Duong
  • Alexander G. Heriot
  • Robert J. S. Thomas
  • Wayne A. Phillips
Translational Research and Biomarkers

Abstract

Cancer treatment is now moving toward a personalized approach, promising improved rates of response and survival. A number of studies have employed the use of microarrays to investigate the predictive potential of expression profiling in gastrointestinal (GI) cancer patients. However while many robust predictive classifiers relating to response and prognosis have been generated for GI cancer patients, these have yet to make the transition to the clinic. The main obstacle is the limited cross validation between predictive gene lists identified for the same tumor type and outcome. Differences in the experimental design, analysis, and interpretation of results all contribute to this variation, with numerous factors influencing which genes are highlighted as predictive. While predictive genomics shows immense potential, it is still a relatively new field and the validation of predictive gene lists derived from microarray data remains a challenge. Future studies must carefully consider all aspects of experimental design to ensure a clinically applicable predictive test can be developed. With this in mind, more extensive and collaborative research must be undertaken before microarray-based platforms can be used routinely in tailoring GI cancer treatment and change clinical practice. Larger cohorts and consistency in methodology will enable the findings from this research to make the transition to the clinic.

References

  1. 1.
    Boyle P, Levin BE. World Cancer Report 2008. Lyon, France: International Agency for Research on Cancer, 2008. p. 338, 344, 374.Google Scholar
  2. 2.
    Gebski V, Burmeister B, Smithers BM, Foo K, Zalcberg J, Simes J. Survival benefits from neoadjuvant chemoradiotherapy or chemotherapy in oesophageal carcinoma: a meta-analysis. Lancet Oncol. 2007;8:226–34.PubMedCrossRefGoogle Scholar
  3. 3.
    Sauer R, Becker H, Hohenberger W, Rödel C, Wittekind C, Fietkau R, et al. Preoperative versus postoperative chemoradiotherapy for rectal cancer. N Engl J Med. 2004;351:1731–40.PubMedCrossRefGoogle Scholar
  4. 4.
    Cunningham D, Allum WH, Stenning SP, Thompson JN, Van de Velde CJ, Nicolson M, et al. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med. 2006;355:11–20.PubMedCrossRefGoogle Scholar
  5. 5.
    Hammoud ZT, Kesler KA, Ferguson MK, Battafarrano RJ, Bhogaraju A, Hanna N, et al. Survival outcomes of resected patients who demonstrate a pathologic complete response after neoadjuvant chemoradiation therapy for locally advanced esophageal cancer. Dis Esophagus. 2006;19:69–72.PubMedCrossRefGoogle Scholar
  6. 6.
    Berger AC, Farma J, Scott WJ, Freedman G, Weiner L, Cheng JD, et al. Complete response to neoadjuvant chemoradiotherapy in esophageal carcinoma is associated with significantly improved survival. J Clin Oncol. 2005;23:4330–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Hiotis SP, Weber SM, Cohen AM, Minsky BD, Paty PB, Guillem JG, et al. Assessing the predictive value of clinical complete response to neoadjuvant therapy for rectal cancer: an analysis of 488 patients. J Am Coll Surg. 2002;194:131–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Lin AY, Wong WD, Shia J, Minsky BD, Temple LK, Guillem JG, et al. Predictive clinicopathologic factors for limited response of T3 rectal cancer to combined modality therapy. Int J Colorectal Dis. 2008;23:243–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Saw RP, Morgan M, Koorey D, Painter D, Findlay M, Stevens G, et al. p53, deleted in colorectal cancer gene, and thymidylate synthase as predictors of histopathologic response and survival in low, locally advanced rectal cancer treated with preoperative adjuvant therapy. Dis Colon Rectum. 2003;46:192–202.PubMedCrossRefGoogle Scholar
  10. 10.
    Park YA, Sohn SK, Seong J, Baik SH, Lee KY, Kim NK, et al. Serum CEA as a predictor for the response to preoperative chemoradiation in rectal cancer. J Surg Oncol. 2006;93:145–50.PubMedCrossRefGoogle Scholar
  11. 11.
    Yoon SM, Kim DY, Kim TH, Jung KH, Chang HJ, Koom WS, et al. Clinical parameters predicting pathologic tumor response after preoperative chemoradiotherapy for rectal cancer. Int J Radiat Oncol Biol Phys. 2007;69:1167–72.PubMedCrossRefGoogle Scholar
  12. 12.
    Elsaleh H, Powell B, Soontrapornchai P, Joseph D, Goria F, Spry N, et al. p53 gene mutation, microsatellite instability and adjuvant chemotherapy: impact on survival of 388 patients with Dukes’ C colon carcinoma. Oncology. 2000;58:52–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Blower PE, Verducci JS, Lin S, Zhou J, Chung JH, Dai Z, et al. MicroRNA expression profiles for the NCI-60 cancer cell panel. Mol Cancer Ther. 2007;6:1483–91.PubMedCrossRefGoogle Scholar
  14. 14.
    Kato K, Iida S, Uetake H, Takagi Y, Yamashita T, Inokuchi M, et al. Methylated TMS1 and DAPK genes predict prognosis and response to chemotherapy in gastric cancer. Int J Cancer. 2008;122:603–8.PubMedCrossRefGoogle Scholar
  15. 15.
    van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415:530–6.CrossRefGoogle Scholar
  16. 16.
    van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347:1999–2009.PubMedCrossRefGoogle Scholar
  17. 17.
    Buyse M, Loi S, van’t Veer L, Viale G, Delorenzi M, Glas AM, et al. Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst. 2006;98:1183–92.PubMedCrossRefGoogle Scholar
  18. 18.
    Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351:2817–26.PubMedCrossRefGoogle Scholar
  19. 19.
    Habel LA, Shak S, Jacobs MK, Capra A, Alexander C, Pho M, et al. A population-based study of tumor gene expression and risk of breast cancer death among lymph node-negative patients. Breast Cancer Res. 2006;8:R25-0.PubMedCrossRefGoogle Scholar
  20. 20.
    Paik S, Tang G, Shak S, Kim C, Baker J, Kim W, et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol. 2006;24:3726–34.PubMedCrossRefGoogle Scholar
  21. 21.
    Duong C, Greenawalt DM, Kowalczyk A, Ciavarella ML, Raskutti G, Murray WK, et al. Pretreatment gene expression profiles can be used to predict response to neoadjuvant chemoradiotherapy in esophageal cancer. Ann Surg Oncol. 2007;14:3602–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Schauer M, Janssen KP, Rimkus C, Raggi M, Feith M, Friess H, et al. Microarray-based response prediction in esophageal adenocarcinoma. Clin Cancer Res. 2010;16:330–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Maher SG, Gillham CM, Duggan SP, Smyth PC, Miller N, Muldoon C, et al. Gene expression analysis of diagnostic biopsies predicts pathological response to neoadjuvant chemoradiotherapy of esophageal cancer. Ann Surg. 2009;250:729–37.PubMedCrossRefGoogle Scholar
  24. 24.
    Luthra R, Wu TT, Luthra MG, Izzo J, Lopez-Alvarez E, Zhang L, et al. Gene expression profiling of localized esophageal carcinomas: association with pathologic response to preoperative chemoradiation. J Clin Oncol. 2006;24:259–67.PubMedCrossRefGoogle Scholar
  25. 25.
    Chen CN, Lin JJ, Chen JJ, Lee PH, Yang CY, Kuo ML, et al. Gene expression profile predicts patient survival of gastric cancer after surgical resection. J Clin Oncol. 2005;23:7286–95.PubMedCrossRefGoogle Scholar
  26. 26.
    Yamada Y, Arao T, Gotoda T, Taniguchi H, Oda I, Shirao K, et al. Identification of prognostic biomarkers in gastric cancer using endoscopic biopsy samples. Cancer Sci. 2008;99:2193–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Barrier A, Roser F, Boelle PY, Franc B, Tse C, Brault D, et al. Prognosis of stage II colon cancer by non-neoplastic mucosa gene expression profiling. Oncogene. 2007;26:2642–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Eschrich S, Yang I, Bloom G, Kwong KY, Boulware D, Cantor A, et al. Molecular staging for survival prediction of colorectal cancer patients. J Clin Oncol. 2005;23:3526–35.PubMedCrossRefGoogle Scholar
  29. 29.
    Lin YH, Friederichs J, Black MA, Mages J, Rosenberg R, Guilford PJ, et al. Multiple gene expression classifiers from different array platforms predict poor prognosis of colorectal cancer. Clin Cancer Res. 2007;13:498–507.PubMedCrossRefGoogle Scholar
  30. 30.
    Jorissen RN, Gibbs P, Christie M, Prakash S, Lipton L, Desai J, et al. Metastasis-Associated Gene Expression Changes Predict Poor Outcomes in Patients with Dukes Stage B and C Colorectal Cancer. Clin Cancer Res. 2009;15:7642–51.PubMedCrossRefGoogle Scholar
  31. 31.
    Watanabe T, Komuro Y, Kiyomatsu T, Kanazawa T, Kazama Y, Tanaka J, et al. Prediction of sensitivity of rectal cancer cells in response to preoperative radiotherapy by DNA microarray analysis of gene expression profiles. Cancer Res. 2006;66:3370–4.PubMedCrossRefGoogle Scholar
  32. 32.
    Kim IJ, Lim SB, Kang HC, Chang HJ, Ahn SA, Park HW, et al. Microarray gene expression profiling for predicting complete response to preoperative chemoradiotherapy in patients with advanced rectal cancer. Dis Colon Rectum. 2007;50:1342–53.PubMedCrossRefGoogle Scholar
  33. 33.
    Daemen A, Gevaert O, De Bie T, Debucquoy A, Machiels JP, De Moor B, et al. Integrating microarray and proteomics data to predict the response on cetuximab in patients with rectal cancer. Pac Symp Biocomput. 2008;166–77.Google Scholar
  34. 34.
    Rimkus C, Friederichs J, Boulesteix AL, Theisen J, Mages J, Becker K, et al. Microarray-based prediction of tumor response to neoadjuvant radiochemotherapy of patients with locally advanced rectal cancer. Clin Gastroenterol Hepatol. 2008;6:53–61.PubMedCrossRefGoogle Scholar
  35. 35.
    Debucquoy A, Haustermans K, Daemen A, Aydin S, Libbrecht L, Gevaert O, et al. Molecular response to cetuximab and efficacy of preoperative cetuximab-based chemoradiation in rectal cancer. J Clin Oncol. 2009;27:2751–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Ghadimi BM, Grade M, Difilippantonio MJ, Varma S, Simon R, Montagna C, et al. Effectiveness of gene expression profiling for response prediction of rectal adenocarcinomas to preoperative chemoradiotherapy. J Clin Oncol. 2005;23:1826–38.PubMedCrossRefGoogle Scholar
  37. 37.
    Bruland O, Fluge O, Immervoll H, Balteskard L, Myklebust M, Skarstein A, et al. Gene expression reveals two distinct groups of anal carcinomas with clinical implications. Br J Cancer. 2008;98:1264–73.PubMedCrossRefGoogle Scholar
  38. 38.
    Farmer P, Bonnefoi H, Anderle P, Cameron D, Wirapati P, Becette V, et al. A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nat Med. 2009;15:68–74.PubMedCrossRefGoogle Scholar
  39. 39.
    Barrier A, Boelle PY, Lemoine A, Flahault A, Dudoit S, Huguier M. Gene expression profiling of nonneoplastic mucosa may predict clinical outcome of colon cancer patients. Dis Colon Rectum. 2005;48:2238–48.PubMedCrossRefGoogle Scholar
  40. 40.
    Michiels S, Koscielny S, Hill C. Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet. 2005;365:488–92.PubMedCrossRefGoogle Scholar
  41. 41.
    Berg AO, Armstrong K, Botkin J, Calonge N, Haddow J, Hayes M, et al. Recommendations from the EGAPP Working Group: can tumor gene expression profiling improve outcomes in patients with breast cancer? Genet Med. 2009;11:66–73.CrossRefGoogle Scholar
  42. 42.
    Kalady MF, de Campos-Lobato LF, Stocchi L, Geisler DP, Dietz D, Lavery IC, et al. Predictive factors of pathologic complete response after neoadjuvant chemoradiation for rectal cancer. Ann Surg. 2009;250:582–9.Google Scholar
  43. 43.
    Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92:205–16.PubMedCrossRefGoogle Scholar
  44. 44.
    Miller AB, Hoogstraten B, Staquet M, Winkler A. Reporting results of cancer treatment. Cancer. 1981;47:207–14.PubMedCrossRefGoogle Scholar
  45. 45.
    Habr-Gama A, Perez RO, Nadalin W, Sabbaga J, Ribeiro U Jr, Silva e Sousa AH Jr, et al. Operative versus nonoperative treatment for stage 0 distal rectal cancer following chemoradiation therapy: long-term results. Ann Surg. 2004;240:711–8.PubMedGoogle Scholar
  46. 46.
    Ooi CH, Ivanova T, Wu J, Lee M, Tan IB, Tao J, et al. Oncogenic pathway combinations predict clinical prognosis in gastric cancer. PLoS Genet. 2009; 5:e1000676-0 [Epub ahead of print].PubMedCrossRefGoogle Scholar

Copyright information

© Society of Surgical Oncology 2010

Authors and Affiliations

  • Kate H. Brettingham-Moore
    • 1
    • 2
  • Cuong P. Duong
    • 1
    • 3
  • Alexander G. Heriot
    • 1
    • 3
  • Robert J. S. Thomas
    • 1
    • 3
  • Wayne A. Phillips
    • 1
    • 2
    • 3
  1. 1.Division of Cancer SurgeryPeter MacCallum Cancer CentreEast MelbourneAustralia
  2. 2.Division of Cancer ResearchPeter MacCallum Cancer CentreEast MelbourneAustralia
  3. 3.University of Melbourne Department of Surgery, St. Vincent’s HospitalFitzroyAustralia

Personalised recommendations