Annals of Surgical Oncology

, Volume 15, Issue 3, pp 791–799 | Cite as

Tumor-Associated Lymphangiogenesis Correlates with Lymph Node Metastases and Prognosis in Hilar Cholangiocarcinoma

  • Armin Thelen
  • Arne Scholz
  • Christoph Benckert
  • Wilko Weichert
  • Ekkehart Dietz
  • Bertram Wiedenmann
  • Peter Neuhaus
  • Sven Jonas
Hepatic and Pancreatic Tumors



Tumor-associated lymphangiogenesis has been shown to promote nodal spread and is of prognostic significance in some tumor entities. Currently, nothing is known about the impact of lymphangiogenesis on progression and prognosis in hilar cholangiocarcinoma.


We analyzed tissue specimens of normal liver and hilar cholangiocarcinoma (n = 60) by immunohistochemistry using the lymphendothelial-specific antibody D2-40 and subsequently quantified lymphatic microvessel density (LVD). The LVD was correlated with clinicopathological characteristics and recurrence pattern of the tumors as well as patients’ survival.


In contrast to the low abundance of lymphatic vessels in nontransformed liver tissue, we found an induction of lymphangiogenesis in hilar cholangiocarcinoma. Tumors with a high LVD (34 out of 60) had a significant higher incidence of lymph node involvement (p < 0.001), perivascular (p = 0.017), and perineural (p = 0.033) lymphangiosis and local recurrence (p < 0.001). Furthermore, a high LVD was identified to be a significant overall (three-year: 24.4% versus 90.5%; five-year: 7.0% versus 76.4%; p < 0.001) and disease-free (three-year: 8.3% versus 76.6%; five-year: 5.9% versus 61.4%; p < 0.001) survival disadvantage, with LVD representing an independent prognostic factor for survival (p < 0.001) in the multivariate analysis.


Lymphangiogenesis is associated with increased frequency of tumor cells in lymphatics and lymph nodes in hilar cholangiocarcinoma. The prognostic importance of tumor-associated lymphangiogenesis was reflected by LVD serving as an independent prognostic factor. In addition, lymphangiogenesis may represent a potential target in the development of new therapeutic approaches in hilar cholangiocarcinoma.


Hilar cholangiocarcinoma Lymphangiogenesis Tumor progression Prognosis Survival 


  1. 1.
    Alitalo K, Tammela T, Petrova TV. Lymphangiogenesis in development and human disease. Nature 2005;438:946–53PubMedCrossRefGoogle Scholar
  2. 2.
    Choi WW, Lewis MM, Lawson D, et al. Angiogenic and lymphangiogenic microvessel density in breast carcinoma: correlation with clinicopathologic parameters and VEGF-family gene expression. Mod Pathol 2005;18:143–52PubMedCrossRefGoogle Scholar
  3. 3.
    Renyi-Vamos F, Tovari J, Fillinger J, et al. Lymphangiogenesis correlates with lymph node metastasis, prognosis, and angiogenic phenotype in human non-small cell lung cancer. Clin Cancer Res 2005;11:7344–53PubMedCrossRefGoogle Scholar
  4. 4.
    Franchi A, Gallo O, Massi D, et al. Tumor lymphangiogenesis in head and neck squamous cell carcinoma: a morphometric study with clinical correlations. Cancer 2004;101:973–8PubMedCrossRefGoogle Scholar
  5. 5.
    Zeng Y, Opeskin K, Horvath LG, et al. Lymphatic vessel density and lymph node metastasis in prostate cancer. Prostate 2005;65:222–30PubMedCrossRefGoogle Scholar
  6. 6.
    Kahn HJ, Marks A. A new monoclonal antibody, D2–40, for detection of lymphatic invasion in primary tumors. Lab Invest 2002;82:1255–7PubMedGoogle Scholar
  7. 7.
    Schacht V, Dadras SS, Johnson LA, et al. Up-regulation of the lymphatic marker podoplanin, a mucin-type transmembrane glycoprotein, in human squamous cell carcinomas and germ cell tumors. Am J Pathol 2005;166:913–21PubMedGoogle Scholar
  8. 8.
    Brundler MA, Harrison JA, de Saussure B, et al. Lymphatic vessel density in the neoplastic progression of Barrett’s oesophagus to adenocarcinoma. J Clin Pathol 2006;59:191–5PubMedCrossRefGoogle Scholar
  9. 9.
    Neuhaus P, Jonas S. Surgery for hilar cholangiocarcinoma–the German experience. J Hepatobiliary Pancreat Surg 2000;7:142–7PubMedCrossRefGoogle Scholar
  10. 10.
    Neuhaus P, Jonas S, Settmacher U, et al. Surgical management of proximal bile duct cancer: extended right lobe resection increases resectability and radicality. Langenbecks Arch Surg 2003;388:194–200PubMedCrossRefGoogle Scholar
  11. 11.
    Patel T. Cholangiocarcinoma. Nat Clin Pract Gastroenterol Hepatol 2006;3:33–42PubMedCrossRefGoogle Scholar
  12. 12.
    Ortner MA, Dorta G. Technology insight: Photodynamic therapy for cholangiocarcinoma. Nat Clin Pract Gastroenterol Hepatol 2006;3:459–67PubMedCrossRefGoogle Scholar
  13. 13.
    Mazhar D, Stebbing J, Bower M. Chemotherapy for advanced cholangiocarcinoma: what is standard treatment? Future Oncol 2006;2:509–14PubMedCrossRefGoogle Scholar
  14. 14.
    Jang JY, Kim SW, Park DJ, et al. Actual long-term outcome of extrahepatic bile duct cancer after surgical resection. Ann Surg 2005;241:77–84PubMedGoogle Scholar
  15. 15.
    Wiley J, Sons. UICC. TNM Classification of Malignant Tumors. 6th ed. New York: Springer, 2002Google Scholar
  16. 16.
    Klempnauer J, Ridder GJ, von Wasielewski R, et al. Resectional surgery of hilar cholangiocarcinoma: a multivariate analysis of prognostic factors. J Clin Oncol 1997;15:947–54PubMedGoogle Scholar
  17. 17.
    Neuhaus P, Jonas S, Bechstein WO, et al. Extended resections for hilar cholangiocarcinoma. Ann Surg 1999;230:808–19PubMedCrossRefGoogle Scholar
  18. 18.
    Abdel Wahab M, Fathy O, Elghwalby N, et al. Resectability and prognostic factors after resection of hilar cholangiocarcinoma. Hepatogastroenterology 2006;53:5–10PubMedGoogle Scholar
  19. 19.
    Jarnagin WR, Fong Y, DeMatteo RP, et al. Staging, resectability, and outcome in 225 patients with hilar cholangiocarcinoma. Ann Surg 2001;234:507–17PubMedCrossRefGoogle Scholar
  20. 20.
    Ebata T, Nagino M, Kamiya J, et al. Hepatectomy with portal vein resection for hilar cholangiocarcinoma: audit of 52 consecutive cases. Ann Surg 2003;238:720–7PubMedCrossRefGoogle Scholar
  21. 21.
    Ramacciato G, Di Benedetto F, Cautero N, et al. Prognostic factors and long term outcome after surgery for hilar cholangiocarcinoma. Univariate and multivariate analysis. Chir Ital 2004;56:749–59Google Scholar
  22. 22.
    Padera TP, Kadambi A, di Tomaso E, et al. Lymphatic metastasis in the absence of functional intratumor lymphatics. Science 2002;296:1883–6PubMedCrossRefGoogle Scholar
  23. 23.
    Kimura W, Nagai H, Atomi Y, et al. Clinicopathological characteristics of hepatic hilar bile duct carcinoma. Hepatogastroenterology 1993;40:21–7PubMedGoogle Scholar
  24. 24.
    Schoppmann SF, Bayer G, Aumayr K, et al. Prognostic value of lymphangiogenesis and lymphovascular invasion in invasive breast cancer. Ann Surg 2004;240:306–12PubMedCrossRefGoogle Scholar
  25. 25.
    Miyata Y, Kanda S, Ohba K, et al. Lymphangiogenesis and angiogenesis in bladder cancer: prognostic implications and regulation by vascular endothelial growth factors-A, -C, and -D. Clin Cancer Res 2006;12:800–6PubMedCrossRefGoogle Scholar
  26. 26.
    Nakamura Y, Yasuoka H, Tsujimoto M, et al. Importance of lymph vessels in gastric cancer: a prognostic indicator in general and a predictor for lymph node metastasis in early stage cancer. J Clin Pathol 2006;59:77–82PubMedCrossRefGoogle Scholar
  27. 27.
    Hirakawa S, Kodama S, Kunstfeld R, et al. VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med 2005;201:1089–99PubMedCrossRefGoogle Scholar
  28. 28.
    Achen MG, Stacker SA. Tumor lymphangiogenesis and metastatic spread-new players begin to emerge. Int J Cancer 2006;119:1755–60PubMedCrossRefGoogle Scholar
  29. 29.
    Schoppmann SF, Birner P, Stöckl J, et al. Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol 2002;161:947–56PubMedGoogle Scholar
  30. 30.
    Benckert C, Jonas S, Cramer T, et al. Transforming growth factor beta 1 stimulates vascular endothelial growth factor gene transcription in human cholangiocellular carcinoma cells. Cancer Res 2003;63:1083–92PubMedGoogle Scholar
  31. 31.
    Pytowski B, Goldman J, Persaud K, et al. Complete and specific inhibition of adult lymphatic regeneration by a novel VEGFR-3 neutralizing antibody. J Natl Cancer Inst 2005;97:14–21PubMedCrossRefGoogle Scholar
  32. 32.
    He Y, Kozaki K, Karpanen T, et al. Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J Natl Cancer Inst 2002;94:819–25PubMedGoogle Scholar
  33. 33.
    Stacker SA, Caesar C, Baldwin ME, et al. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 2001;7:186–91PubMedCrossRefGoogle Scholar
  34. 34.
    Ahmed SI, Thomas AL, Steward WP. Vascular endothelial growth factor (VEGF) inhibition by small molecules. J Chemother 2004;16:59–63PubMedGoogle Scholar

Copyright information

© Society of Surgical Oncology 2007

Authors and Affiliations

  • Armin Thelen
    • 1
  • Arne Scholz
    • 2
  • Christoph Benckert
    • 1
  • Wilko Weichert
    • 3
  • Ekkehart Dietz
    • 4
  • Bertram Wiedenmann
    • 2
  • Peter Neuhaus
    • 1
  • Sven Jonas
    • 1
  1. 1.Department of General, Visceral and Transplantation Surgery, Campus Virchow-KlinikumCharité Universitaetsmedizin BerlinBerlinGermany
  2. 2.Department of Hepatology, Gastroenterology, Endocrinology and Metabolism, Campus Virchow-KlinikumCharité Universitaetsmedizin BerlinBerlinGermany
  3. 3.Department of Pathology, Charité Campus MitteCharité Universitaetsmedizin BerlinBerlinGermany
  4. 4.Institute of Biometry and Clinical Epidemiology, Charité Campus MitteCharité Universitaetsmedizin BerlinBerlinGermany

Personalised recommendations