Annals of Surgical Oncology

, Volume 14, Issue 4, pp 1416–1423 | Cite as

Down-Regulation of Pro-Apoptotic Genes is an Early Event in the Progression of Malignant Melanoma

  • Eric H. Jensen
  • James M. Lewis
  • James M. McLoughlin
  • Michael D. Alvarado
  • Adil Daud
  • Jane Messina
  • Steven Enkemann
  • Timothy J. Yeatman
  • Vernon K. Sondak
  • Adam I. Riker
Article

Abstract

Introduction

Down-regulation of apoptosis genes has been implicated in the development and progression of malignant melanoma. We used cDNA microarray to evaluate pro-apoptotic gene expression comparing normal skin to melanoma (thin and thick), nodal disease and distant metastases.

Methods

Twenty-eight specimens including skin (= 1), thin melanoma (= 6), thick melanoma (= 7), nodal disease (= 6), and distant metastases (= 8), were harvested at the time of resection from 16 individuals. RNA was isolated and microarray analysis utilizing the Affymetrix GeneChip (54,000 genetic elements, U133A+B... levels) was performed. Mean level of expression was calculated for each gene within a sample group. Expression profiles were then compared between tissue groups. Student’s t-test was used to determine variance in expression between groups.

Results

We reviewed the expression of 54,000 genetic elements, of which 2,015 were found to have significantly altered expression. This represents 1,602 genes. Twenty-two pro-apoptotic genes were found to be down-regulated when compared to normal skin. Overall reduction was evaluated comparing normal skin to metastases with a range of 3.31–64.04-fold-decrease. When comparing the tissue types sequentially, the greatest fold-decrease in gene expression occurred when comparing skin to all melanomas (thin and thick) (= 0.011). Subset analysis comparing normal skin to thin melanoma or thick melanoma, revealed the greatest component of overall reduction at the transition from thin to thick lesions (= 0.003).

Conclusion

Sequential down-regulation of pro-apoptotic genes is associated with the progression of malignant melanoma. The greatest fold-decrease occurs in the transformation from thin to thick lesions.

Keywords

Apoptosis Melanoma Metastasis Gene profiling Microarray 

References

  1. 1.
    Surveillance, epidemiology and end results (SEER) program public-use data (1973–2001). National Cancer Institute, DCCPS, Surveillance Research Program, Cancer Statistics Branch, released April 2004, based on the November 2003 submissionGoogle Scholar
  2. 2.
    Eschrich S, Yang I, Bloom G, et al. Molecular staging for survival prediction of colorectal cancer patients. J Clin Oncol 2005;23:3526–35PubMedCrossRefGoogle Scholar
  3. 3.
    Frederiksen CM, Knudsen S, Laurberg S, Orntoft TF. Classification of Dukes' B and C colorectal cancers using expression arrays. J Cancer Res Clin Oncol 2003;129:263–71PubMedGoogle Scholar
  4. 4.
    Barrier A, Lemoine A, Boelle PY, et al. Colon cancer prognosis prediction by gene expression profiling. Oncogene 2005;24:6155–64PubMedCrossRefGoogle Scholar
  5. 5.
    Centeno BA, Enkemann SA, Coppola D, et al. Classification of human tumors using gene expression profiles obtained after microarray analysis of fine-needle aspiration biopsy samples. Cancer 2005;105:101–9PubMedCrossRefGoogle Scholar
  6. 6.
    Bloom G, Yang IV, Boulware D, et al. Multi-platform, multi-site, microarray-based human tumor classification. Am J Pathol 2004;164:9–16PubMedGoogle Scholar
  7. 7.
    Clarke PA, te Poele R, Workman P. Gene expression microarray technologies in the development of new therapeutic agents. Eur J Cancer 2004;40:2560–91PubMedCrossRefGoogle Scholar
  8. 8.
    Huang Y, Sadee W. Drug sensitivity and resistance genes in cancer chemotherapy: a chemogenomics approach. Drug Discov Today 2003;8:356–63PubMedCrossRefGoogle Scholar
  9. 9.
    Alaoui-Jamali MA, Dupre I, Qiang H. Prediction of drug sensitivity and drug resistance in cancer by transcriptional and proteomic profiling. Drug Resist Updat 2004;7:245–55PubMedCrossRefGoogle Scholar
  10. 10.
    Mariadason JM, Arango D, Shi Q, et al. Gene expression profiling-based prediction of response of colon carcinoma cells to 5-fluorouracil and camptothecin. Cancer Res 2003;63:8791–812PubMedGoogle Scholar
  11. 11.
    Monks NR, Pardee AB. Targeting the NF-kappaB pathway in estrogen receptor negative MDA-MB-231 breast cancer cells using small inhibitory RNAs. J Cell Biochem 2006;98(1):221–33PubMedCrossRefGoogle Scholar
  12. 12.
    Monks NR, Biswas DK, Pardee AB. Blocking anti-apoptosis as a strategy for cancer chemotherapy: NF-kappaB as a target. J Cell Biochem 2004;92:646–50PubMedCrossRefGoogle Scholar
  13. 13.
    Kolb JP, Kern C, Quiney C, et al. Re-establishment of a normal apoptotic process as a therapeutic approach in B-CLL. Curr Drug Targets Cardiovasc Haematol Disord 2003;3:261–86PubMedCrossRefGoogle Scholar
  14. 14.
    D’Agnano I, Valentini A, Fornari C, et al. Myc down-regulation induces apoptosis in M14 melanoma cells by increasing p27(kip1) levels. Oncogene 2001;20:2814–25PubMedCrossRefGoogle Scholar
  15. 15.
    Fesik SW. Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer 2005;5:876–85PubMedCrossRefGoogle Scholar
  16. 16.
    Jonsson H, Peng SL. Forkhead transcription factors in immunology. Cell Mol Life Sci 2005;62:397–409PubMedCrossRefGoogle Scholar
  17. 17.
    Kaghad M, Bonnet H, Yang A, et al. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 1997;90:809–19PubMedCrossRefGoogle Scholar
  18. 18.
    Zaika AI, Kovalev S, Marchenko ND, Moll UM. Overexpression of the wild type p73 gene in breast cancer tissues and cell lines. Cancer Res 1999;59:3257–63PubMedGoogle Scholar
  19. 19.
    Cai YC, Yang GY, Nie Y, et al. Molecular alterations of p73 in human esophageal squamous cell carcinomas: loss of heterozygosity occurs frequently; loss of imprinting and elevation of p73 expression may be related to defective p53. Carcinogenesis 2000;21:683–9PubMedCrossRefGoogle Scholar
  20. 20.
    Sunahara M, Ichimiya S, Nimura Y, et al. Mutational analysis of the p73 gene localized at chromosome 1p36.3 in colorectal carcinomas. Int J Oncol 1998;13:319–23PubMedGoogle Scholar
  21. 21.
    Chi SG, Chang SG, Lee SJ, et al. Elevated and biallelic expression of p73 is associated with progression of human bladder cancer. Cancer Res 1999;59:2791–3PubMedGoogle Scholar
  22. 22.
    Corn PG, Kuerbitz SJ, van Noesel MM, et al. Transcriptional silencing of the p73 gene in acute lymphoblastic leukemia and Burkitt's lymphoma is associated with 5′ CpG island methylation. Cancer Res 1999;59:3352–6PubMedGoogle Scholar
  23. 23.
    Kawano S, Miller CW, Gombart AF, et al. Loss of p73 gene expression in leukemias/lymphomas due to hypermethylation. Blood 1999;94:1113–20PubMedGoogle Scholar
  24. 24.
    Flores ER, Tsai KY, Crowley D, et al. p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature 2002;416:560–4PubMedCrossRefGoogle Scholar
  25. 25.
    Irwin MS, Kondo K, Marin MC, et al. Chemosensitivity linked to p73 function. Cancer Cell 2003;3:403–10PubMedCrossRefGoogle Scholar
  26. 26.
    Marsters SA, Sheridan JP, Donahue CJ, et al. Apo-3, a new member of the tumor necrosis factor receptor family, contains a death domain and activates apoptosis and NF-kappa B. Curr Biol 1996;6:1669–76PubMedCrossRefGoogle Scholar
  27. 27.
    Eggert A, Grotzer MA, Zuzak TJ, et al. Expression of Apo-3 and Apo-3L in primitive neuroectodermal tumours of the central and peripheral nervous system. Eur J Cancer 2002;38:92–8PubMedCrossRefGoogle Scholar
  28. 28.
    Screaton GR, Xu XN, Olsen AL, et al. LARD: a new lymphoid-specific death domain containing receptor regulated by alternative pre-mRNA splicing. Proc Natl Acad Sci USA 1997;94:4615–9PubMedCrossRefGoogle Scholar
  29. 29.
    Chawla-Sarkar M, Bae SI, Reu FJ, et al. Downregulation of Bcl-2, FLIP or IAPs (XIAP and survivin) by siRNAs sensitizes resistant melanoma cells to Apo2L/TRAIL-induced apoptosis. Cell Death Differ 2004;11:915–23PubMedCrossRefGoogle Scholar
  30. 30.
    Fulda S, Debatin KM. Sensitization for tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by the chemopreventive agent resveratrol. Cancer Res 2004;64:337–46PubMedCrossRefGoogle Scholar
  31. 31.
    Ren DH, Mayhew E, Hay C, et al. Uveal melanoma expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptors and susceptibility to TRAIL-induced apoptosis. Invest Ophthalmol Vis Sci 2004;45:1162–8PubMedCrossRefGoogle Scholar
  32. 32.
    Zhang XD, Gillespie SK, Borrow JM, Hersey P. The histone deacetylase inhibitor suberic bishydroxamate: a potential sensitizer of melanoma to TNF-related apoptosis-inducing ligand (TRAIL) induced apoptosis. Biochem Pharmacol 2003;66:1537–45PubMedCrossRefGoogle Scholar
  33. 33.
    Ivanov VN, Bhoumik A, Ronai Z. Death receptors and melanoma resistance to apoptosis. Oncogene 2003;22:3152–61PubMedCrossRefGoogle Scholar
  34. 34.
    Wu JJ, Zhang XD, Gillespie S, Hersey P. Selection for TRAIL resistance results in melanoma cells with high proliferative potential. FEBS Lett 2005;579:1940–4PubMedCrossRefGoogle Scholar
  35. 35.
    Drosopoulos KG, Roberts ML, Cermak L, et al. Transformation by oncogenic RAS sensitizes human colon cells to TRAIL-induced apoptosis by up-regulating death receptor 4 and death receptor 5 through a MEK-dependent pathway. J Biol Chem 2005;280:22856–67PubMedCrossRefGoogle Scholar
  36. 36.
    Horak P, Pils D, Haller G, et al. Contribution of epigenetic silencing of tumor necrosis factor-related apoptosis inducing ligand receptor 1 (DR4) to TRAIL resistance and ovarian cancer. Mol Cancer Res 2005;3:335–43PubMedCrossRefGoogle Scholar
  37. 37.
    Frank B, Hemminki K, Shanmugam KS, et al. Association of death receptor 4 haplotype 626C–683C with an increased breast cancer risk. Carcinogenesis 2005;26:1975–7PubMedCrossRefGoogle Scholar
  38. 38.
    Bilanges B, Varrault A, Basyuk E, et al. Loss of expression of the candidate tumor suppressor gene ZAC in breast cancer cell lines and primary tumors. Oncogene 1999;18:3979–88PubMedCrossRefGoogle Scholar
  39. 39.
    Cvetkovic D, Pisarcik D, Lee C, et al. Altered expression and loss of heterozygosity of the LOT1 gene in ovarian cancer. Gynecol Oncol 2004;95:449–55PubMedCrossRefGoogle Scholar
  40. 40.
    Perou CM, Jeffrey SS, van de Rijn M, et al. Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc Natl Acad Sci USA 1999;96:9212–7PubMedCrossRefGoogle Scholar
  41. 41.
    Singhal S, Amin KM, Kruklitis R, et al. Alterations in cell cycle genes in early stage lung adenocarcinoma identified by expression profiling. Cancer Biol Ther 2003;2:291–8PubMedGoogle Scholar
  42. 42.
    Basyuk E, Coulon V, Le Digarcher A, et al. The candidate tumor suppressor gene ZAC is involved in keratinocyte differentiation and its expression is lost in basal cell carcinomas. Mol Cancer Res 2005;3:483–92PubMedCrossRefGoogle Scholar
  43. 43.
    Kidd VJ, Lahti JM, Teitz T. Proteolytic regulation of apoptosis. Semin Cell Dev Biol 2000;11:191–201PubMedCrossRefGoogle Scholar
  44. 44.
    Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell 2004;116:205–19PubMedCrossRefGoogle Scholar
  45. 45.
    Fan TJ, Han LH, Cong RS, Liang J. Caspase family proteases and apoptosis. Acta Biochim Biophys Sin (Shanghai) 2005;37:719–27CrossRefGoogle Scholar
  46. 46.
    Harwood SM, Yaqoob MM, Allen DA. Caspase and calpain function in cell death: bridging the gap between apoptosis and necrosis. Ann Clin Biochem 2005;42:415–31PubMedCrossRefGoogle Scholar
  47. 47.
    Johnstone RW, Tommerup N, Hansen C, et al. Mapping of the human PAWR (par-4) gene to chromosome 12q21. Genomics 1998;53:241–3PubMedCrossRefGoogle Scholar
  48. 48.
    Sells SF, Han SS, Muthukkumar S, et al. Expression and function of the leucine zipper protein Par-4 in apoptosis. Mol Cell Biol 1997;17:3823–32PubMedGoogle Scholar
  49. 49.
    Garcia-Cao I, Lafuente MJ, Criado LM, et al. Genetic inactivation of Par4 results in hyperactivation of NF-kappaB and impairment of JNK and p38. EMBO Rep 2003;4:307–12PubMedCrossRefGoogle Scholar
  50. 50.
    Pruitt K, Ulku AS, Frantz K, et al. Ras-mediated loss of the pro-apoptotic response protein Par-4 is mediated by DNA hypermethylation through Raf-independent and Raf-dependent signaling cascades in epithelial cells. J Biol Chem 2005;280:23363–70PubMedCrossRefGoogle Scholar

Copyright information

© Society of Surgical Oncology 2006

Authors and Affiliations

  • Eric H. Jensen
    • 1
    • 2
  • James M. Lewis
    • 1
  • James M. McLoughlin
    • 1
  • Michael D. Alvarado
    • 1
  • Adil Daud
    • 1
  • Jane Messina
    • 1
  • Steven Enkemann
    • 1
  • Timothy J. Yeatman
    • 1
  • Vernon K. Sondak
    • 1
  • Adam I. Riker
    • 1
    • 3
  1. 1.Department of Interdisciplinary Oncology, Cutaneous Oncology ProgramH. Lee Moffitt Cancer Center and Research InstituteFLUSA
  2. 2.Department of SurgeryDivision of Surgical OncologyMinneapolisUSA
  3. 3.University of South AlabamaMitchell Cancer InstituteMobileUSA

Personalised recommendations