Advertisement

Annals of Surgical Oncology

, Volume 14, Issue 3, pp 1058–1064 | Cite as

Gene Expression Profile of Primary Gastric Cancer: Towards the Prediction of Lymph Node Status

  • Alberto Marchet
  • Simone Mocellin
  • Claudio Belluco
  • Alessandro Ambrosi
  • Francesco De Marchi
  • Enzo Mammano
  • Maura Digito
  • Alberta Leon
  • Antonello D’Arrigo
  • Mario Lise
  • Donato Nitti
Article

Abstract

Background

The identification of gastric tumors associated with a higher risk of lymph node metastasis could help surgeons select patients who may benefit from extended lymph node dissection. The aim of this study was to screen the genome in the search of primary gastric cancer gene expression profiles that might predict lymph node status.

Methods

The gene expression profile was evaluated in frozen tumor samples obtained from 32 patients with primary gastric adenocarcinomas. The array consisted of a duplicated spot panel of 5,541 human genes. To classify node-positive (N+) and node-negative (N−) cases, a logistic regression model was fitted optimizing the Akaike Information Criteria after a stepwise gene selection. The accuracy was evaluated by means of leave-one-out cross validation.

Results

All patients underwent radical gastrectomy and extended lymphadenectomy. Of all the cases, 21 were N+ and 11 demonstrated no lymph node involvement (N−). After quality filtering, the analysis of variance selected a set of 136 genes potentially correlated with nodal involvement (P value <.05). Of these 136 genes, 5 were differentially expressed (adjusted P value <.05). After a stepwise gene selection, only three genes (Bik, aurora kinase B, eIF5A2) were retained in the logistic model, which could correctly predict lymph node status in 30 of 32 cases.

Conclusions

If our findings were confirmed, the identified gene pattern might be used to tailor the extent of lymph node dissection on a single patient basis.

Keywords

Gastric cancer Gene expression profile Lymph node status Prognostic markers 

Notes

Acknowledgments

This work was in part supported by the AIRC Regional Grant 2005 and by the grant PRIN (MIUR) 2005.

References

  1. 1.
    Dicken BJ, Bigam DL, Cass C, et al. Gastric adenocarcinoma: review and considerations for future directions. Ann Surg 2005; 241(1):27–39PubMedGoogle Scholar
  2. 2.
    Hohenberger P, Gretschel S. Gastric cancer. Lancet 2003; 362(9380):305–15PubMedCrossRefGoogle Scholar
  3. 3.
    Nitti D, Marchet A, Olivieri M, et al. Ratio between metastatic and examined lymph nodes is an independent prognostic factor after D2 resection for gastric cancer: analysis of a large European monoinstitutional experience. Ann Surg Oncol 2003; 10(9):1077–85PubMedCrossRefGoogle Scholar
  4. 4.
    Jansen EP, Boot H, Verheij M, van de Velde CJ. Optimal locoregional treatment in gastric cancer. J Clin Oncol 2005; 23(20):4509–17PubMedCrossRefGoogle Scholar
  5. 5.
    McCulloch P, Niita ME, Kazi H, Gama-Rodrigues JJ. Gastrectomy with extended lymphadenectomy for primary treatment of gastric cancer. Br J Surg 2005; 92(1):5–13PubMedCrossRefGoogle Scholar
  6. 6.
    Javaid G, Shah OJ, Dar MA, et al. Role of endoscopic ultrasonography in preoperative staging of gastric carcinoma. ANZ J Surg 2004; 74(3):108–11PubMedCrossRefGoogle Scholar
  7. 7.
    Kim HJ, Kim AY, Oh ST, et al. Gastric cancer staging at multi-detector row CT gastrography: comparison of transverse and volumetric CT scanning. Radiology 2005; 236(3):879–85PubMedGoogle Scholar
  8. 8.
    Kim MC, Kim HH, Jung GJ, et al. Lymphatic mapping and sentinel node biopsy using 99mTc tin colloid in gastric cancer. Ann Surg 2004; 239(3):383–7PubMedCrossRefGoogle Scholar
  9. 9.
    Ajisaka H, Miwa K. Micrometastases in sentinel nodes of gastric cancer. Br J Cancer 2003; 89(4):676–80PubMedCrossRefGoogle Scholar
  10. 10.
    Ryu KW, Lee JH, Kim HS, et al. Prediction of lymph nodes metastasis by sentinel node biopsy in gastric cancer. Eur J Surg Oncol 2003; 29(10):895–99PubMedCrossRefGoogle Scholar
  11. 11.
    Ludwig JA, Weinstein JN. Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer 2005; 5(11):845–56PubMedCrossRefGoogle Scholar
  12. 12.
    Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med 2004; 10(8):789–99PubMedCrossRefGoogle Scholar
  13. 13.
    Songun I, Litvinov SV, van de Velde CJ, et al. Loss of Ep-CAM (CO17–1A) expression predicts survival in patients with gastric cancer. Br J Cancer 2005; 92(9):1767–72PubMedCrossRefGoogle Scholar
  14. 14.
    Scartozzi M, Galizia E, Freddari F, et al. Molecular biology of sporadic gastric cancer: prognostic indicators and novel therapeutic approaches. Cancer Treat Rev 2004; 30(5):451–9PubMedCrossRefGoogle Scholar
  15. 15.
    Nitti D, Belluco C, Mammano E, et al. Low level of p27(Kip1) protein expression in gastric adenocarcinoma is associated with disease progression and poor outcome. J Surg Oncol 2002; 81(4):167–75; discussion 175–6PubMedCrossRefGoogle Scholar
  16. 16.
    Wang CS, Lin KH, Chen SL, et al. Overexpression of SPARC gene in human gastric carcinoma and its clinic-pathologic significance. Br J Cancer 2004; 91(11):1924–30PubMedCrossRefGoogle Scholar
  17. 17.
    Fan Z, Li J, Dong B, Huang X. Expression of Cdx2 and hepatocyte antigen in gastric carcinoma: correlation with histologic type and implications for prognosis. Clin Cancer Res 2005; 11(17):6162–70PubMedCrossRefGoogle Scholar
  18. 18.
    Juttner S, Wissmann C, Jons T, et al. Vascular endothelial growth factor-D and its receptor VEGFR-3: two novel independent prognostic markers in gastric adenocarcinoma. J Clin Oncol 2006; 24(2):228–40PubMedCrossRefGoogle Scholar
  19. 19.
    Wang JY, Hsieh JS, Chen CC, et al. Alterations of APC, c-met, and p53 genes in tumor tissue and serum of patients with gastric cancers. J Surg Res 2004; 120(2):242–8PubMedCrossRefGoogle Scholar
  20. 20.
    Mocellin S, Provenzano M, Rossi CR, et al. DNA array-based gene profiling: from surgical specimen to the molecular portrait of cancer. Ann Surg 2005; 241(1):16–26PubMedGoogle Scholar
  21. 21.
    Chen CN, Lin JJ, Chen JJ, et al. Gene expression profile predicts patient survival of gastric cancer after surgical resection. J Clin Oncol 2005; 23(29):7286–95PubMedCrossRefGoogle Scholar
  22. 22.
    Teramoto K, Tada M, Tamoto E, et al. Prediction of lymphatic invasion/lymph node metastasis, recurrence, and survival in patients with gastric cancer by cDNA array-based expression profiling. J Surg Res 2005; 124(2):225–36PubMedCrossRefGoogle Scholar
  23. 23.
    Weiss MM, Kuipers EJ, Postma C, et al. Genomic profiling of gastric cancer predicts lymph node status and survival. Oncogene 2003; 22(12):1872–79PubMedCrossRefGoogle Scholar
  24. 24.
    D’Arrigo A, Belluco C, Ambrosi A, et al. Metastatic transcriptional pattern revealed by gene expression profiling in primary colorectal carcinoma. Int J Cancer 2005; 115(2):256–62PubMedCrossRefGoogle Scholar
  25. 25.
    Reiner A, Yekutieli D, Benjamini Y. Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 2003; 19(3):368–75PubMedCrossRefGoogle Scholar
  26. 26.
    Dettling M, Buhlmann P. Boosting for tumor classification with gene expression data. Bioinformatics 2003; 19(9):1061–69PubMedCrossRefGoogle Scholar
  27. 27.
    Hartgrink HH, van de Velde CJ. Status of extended lymph node dissection: locoregional control is the only way to survive gastric cancer. J Surg Oncol 2005; 90(3):153–65PubMedCrossRefGoogle Scholar
  28. 28.
    Brennan MF. Current status of surgery for gastric cancer: a review. Gastric Cancer 2005; 8(2):64–70PubMedCrossRefGoogle Scholar
  29. 29.
    Wu CW, Hsiung CA, Lo SS, et al. Stage migration influences on stage-specific survival comparison between D1 and D3 gastric cancer surgeries. Eur J Surg Oncol 2005; 31(2):153–7PubMedCrossRefGoogle Scholar
  30. 30.
    Kazanietz MG. Targeting protein kinase C and “non-kinase” phorbol ester receptors: emerging concepts and therapeutic implications. Biochim Biophys Acta 2005; 1754(1–2):296–304PubMedGoogle Scholar
  31. 31.
    Levy P, Vidaud D, Leroy K, et al. Molecular profiling of malignant peripheral nerve sheath tumors associated with neurofibromatosis type 1, based on large-scale real-time RT-PCR. Mol Cancer 2004; 3:20PubMedCrossRefGoogle Scholar
  32. 32.
    Nottage M, Siu LL. Rationale for Ras and raf-kinase as a target for cancer therapeutics. Curr Pharm Des 2002; 8(25):2231–42PubMedCrossRefGoogle Scholar
  33. 33.
    Kasper M, Regl G, Frischauf AM, Aberger F. GLI transcription factors: Mediators of oncogenic Hedgehog signalling. Eur J Cancer 2006; 42(4):437–45PubMedCrossRefGoogle Scholar
  34. 34.
    Willis SN, Adams JM. Life in the balance: how BH3-only proteins induce apoptosis. Curr Opin Cell Biol 2005; 17(6):617–25PubMedCrossRefGoogle Scholar
  35. 35.
    Keen N, Taylor S. Aurora-kinase inhibitors as anticancer agents. Nat Rev Cancer 2004; 4(12):927–936PubMedCrossRefGoogle Scholar
  36. 36.
    Clement PM, Henderson CA, Jenkins ZA, et al. Identification and characterization of eukaryotic initiation factor 5A-2. Eur J Biochem 2003; 270(21):4254–63PubMedCrossRefGoogle Scholar

Copyright information

© Society of Surgical Oncology 2006

Authors and Affiliations

  • Alberto Marchet
    • 1
  • Simone Mocellin
    • 1
  • Claudio Belluco
    • 2
  • Alessandro Ambrosi
    • 1
    • 3
  • Francesco De Marchi
    • 2
  • Enzo Mammano
    • 1
  • Maura Digito
    • 1
  • Alberta Leon
    • 4
  • Antonello D’Arrigo
    • 4
  • Mario Lise
    • 1
    • 2
  • Donato Nitti
    • 1
  1. 1.Clinica Chirurgica II, Dipartimento di Scienze Oncologiche e ChirurgicheIstituto Oncologico Veneto IRCCS and University of PadovaPadovaItaly
  2. 2.Surgical OncologyCentro di Riferimento Oncologico IRCCSAvianoItaly
  3. 3.University Centre of Statistics for the Biomedical SciencesVita-Salute San Raffaele UniversityMilanItaly
  4. 4.Research & Innovation (R&I) CompanyPadovaItaly

Personalised recommendations