Skip to main content

Advertisement

Log in

Exploring the Potential of Artificial Intelligence as a Facilitating Tool for Formulation Development in Fluidized Bed Processor: a Comprehensive Review

  • Review Article
  • Applications of Machine Learning and A.I. in Pharmaceutical Development and Technology
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

This in-depth study looks into how artificial intelligence (AI) could be used to make formulation development easier in fluidized bed processes (FBP). FBP is complex and involves numerous variables, making optimization challenging. Various AI techniques have addressed this challenge, including machine learning, neural networks, genetic algorithms, and fuzzy logic. By integrating AI with experimental design, process modeling, and optimization strategies, intelligent systems for FBP can be developed. The advantages of AI in this context include improved process understanding, reduced time and cost, enhanced product quality, and robust formulation optimization. However, data availability, model interpretability, and regulatory compliance challenges must be addressed. Case studies demonstrate successful applications of AI in decision-making, process outcome prediction, and scale-up. AI can improve efficiency, quality, and cost-effectiveness in significant ways. Still, it is important to think carefully about data quality, how easy it is to understand, and how to follow the rules. Future research should focus on fully harnessing the potential of AI to advance formulation development in FBP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data supporting this study's findings are available from the corresponding author upon reasonable request.

Abbreviations

FBP:

Fluid bed processing

PATs:

Process analytical technologies

AI:

Artificial intelligence

FBG:

Fluid bed granulation

ANNs:

Artificial neural networks

QbD:

Quality by design

NLP:

Natural language processing

RPA:

Robotic process automation

ML:

Machine learning

DL:

Deep learning

APIs:

Active pharmaceutical ingredients

SVMs:

Support vector machines

GAs:

Genetic Algorithms

MLP:

Multilayer Perceptron

GRNN:

Generalized Regression Neural Network

MNN:

Modular Neural Network

RBFNN:

Radial Basis Function Neural Network

SOM:

Self-organizing maps

OCT:

Optical coherence tomography

References

  1. Jones DM. Controlling particle size and release properties: secondary processing techniques. ACS Symp Ser Am Chem Soc (USA). 1988;370:158–76.

    CAS  Google Scholar 

  2. Gohel M, Parikh R, Baldaniya L, Barot B, Joshi H, Parejiya P, et al. Fluidized bed systems: a review. In: Pharmainfo.net. 2007. p. 1–41.

  3. Pansare JJ, Pagar UN, Dode RH, Mogal PS, Surawase RK. Fluidized bed processing: versatile technique in dosage form development. Res J Pharm Dosage Forms Technol. 2022;14(1):87–93.

    Article  Google Scholar 

  4. Pusapati TR, VenkateshwaraRao T. Fluidized bed processing: a review. Int J Res Pharm Biotechnol. 2014;2(4):1360–5.

    Google Scholar 

  5. Swarbrick J, Boylan JC. Fluid bed dryer, granulator and coaters. Encyclopedia of pharmaceutical technology, vol. 6. New York: Marcel Dekker INC; 1992. p. 171–3.

    Google Scholar 

  6. Chase GG, Jacob K. Undergraduate teaching in solids processing and particle technology. In: Particle Science and Technology. 1998. p.118–21.

  7. Fan X, Zhou C. Estimation of bed expansion and separation density of gas– solid separation fluidized beds using a micron-sized-particle-dense medium. Separations. 2021;8:242.

    Article  CAS  Google Scholar 

  8. Watano S, Morikawa T, Miyanami K. Mathematical model in the kinetics of agitation fluidized bed granulation. Effects of humidity content, damping speed and operation time on granule growth rate. Chem Pharm Bull. 1996;44:409–15.

    Article  CAS  Google Scholar 

  9. Parikh DM. Batch size increase in fluid bed granulation. In: Levin M, editor. Pharmaceutical process scale-up. New York: Marcel Dekker Inc.; 2002. p. 171–220.

    Google Scholar 

  10. Schaefer T, Worts O. Control of fluidized bed granulation, I: Effects of spray angle, nozzle height and starting materials on granule size and size distribution. Arch Pharm Chem Sci Ed. 1977;2014(5):51–60.

    Google Scholar 

  11. Khandagade A, Kale V, Sinha R. Critical quality risk analysis of process parameters of fluid bed coating technology. Int J Ind Eng Technol. 2013;3(4):1.

    Google Scholar 

  12. Wurster DE. Air-suspension technique of coating drug particles. J Am Pharm Assoc. 1959;48:451–4.

    Article  CAS  Google Scholar 

  13. Wurster DE. Preparation of compressed tablet granulations by the air suspension technique II. J Am Pharm Assoc. 1960;49:82–4.

    Article  CAS  Google Scholar 

  14. Gauthier TA. Current R&D challenges for fluidized bed processes in the refining industry. Int J Chem Reactor Eng. 2009;7(1):1857.

    Article  Google Scholar 

  15. Saini V. Fluidized bed processing for multiparticulates. Rasayan J Chem. 2009;2(2):447–50.

    CAS  Google Scholar 

  16. Tok AT, Goh X, Ng WK, Tan RB. Monitoring granulation rate processes using three PAT tools in a pilot-scale fluidized bed. AAPS Pharm Sci Tech. 2008;9(4):1083–91.

    Article  CAS  Google Scholar 

  17. Liske T, Mobus W. The manufacture and comparative aspects of fluidized layer spray granulation. Drugs Made Ger. 1968;11:182–9.

    Google Scholar 

  18. Chen M, Decary M. Artificial intelligence in healthcare: an essential guide for health leaders. Healthc Manag Forum. 2020;33(1):10–8.

    Article  Google Scholar 

  19. Niro Pharma Systems (GEA). Current issues and troubleshooting fluid bed granulation. In: Pharm Technol Europe. 1998. https://www.scribd.com/document/405598518/Glatt. Accessed 14 Nov 2023.

  20. Mörl L, Heinrich S, Peglow M. Fluidized bed spray granulation. In: Handbook of powder technology. Amsterdam: Elsevier Science BV; 2011. p. 21–188.

  21. Bajwa J, Munir U, Nori A, Williams B. Artificial intelligence in healthcare: transforming the practice of medicine. Futur Healthc J. 2021;8(2):188–94.

    Article  Google Scholar 

  22. Meskó B. The top 12 health chatbots. The Medical Futurist. 2018. Available at: https://medicalfuturist.com/top-12-health-chatbots. Accessed June 6, 2019. 12.

  23. Meskó B. FDA approvals for smart algorithms in medicine in one giant infographic. The Medical Futurist. 2019. Available at: https://medicalfuturist.com/fda-approvals-for-algorithms-inmedicine. Accessed August 8, 2019.

  24. Korfiatis P, Erickson BJ. Deep learning can see the unseeable: predicting molecular markers from MRI of brain gliomas. Clin Radiol. 2019;74(5):367–73.

    Article  CAS  PubMed  Google Scholar 

  25. Mak K-K, Pichika MR. Artificial intelligence in drug development: present status and future prospects. Drug Discovery Today. 2019;24:773–80.

    Article  PubMed  Google Scholar 

  26. Sellwood MA. Artificial intelligence in drug discovery. Fut Sci. 2018;10:2025–8.

    CAS  Google Scholar 

  27. Zhu H. Big data and artificial intelligence modeling for drug discovery. Annu Rev Pharmacol Toxicol. 2020;60:573–89.

    Article  CAS  PubMed  Google Scholar 

  28. Pulgamwar GV, Pentewar RS, Bharati RU, Talde SS, Inamdar NA, Kshirsagar NV. Fluid bed technology: a review. Int J Pharm Res Biosci. 2015;4(4):89–110.

    CAS  Google Scholar 

  29. Banks M, Aulton ME. Fluidised-bed granulation: a chronology. Drug Dev Ind Pharm. 1991;17:1437–63.

    Article  CAS  Google Scholar 

  30. Gu L, Liew CV, Heng PWS. Wet spheronization by rotary processing – a multistage single-pot process for producing spheroids. Drug Dev Ind Pharm. 2004;30:111–23.

    Article  CAS  PubMed  Google Scholar 

  31. Turkoğlu M, He M, Sakr A. Evaluation of rotary fluidized-red as wet granulation equipment. Eur J Pharm Biopharm. 1995;41:388–94.

    Google Scholar 

  32. Matsunami K, Ryckaert A, Peeters M, Badr S, Sugiyama H, Nopens I, De Beer T. Analysis of the effects of process parameters on start-up operation in continuous wet granulation. Processes. 2021;9:1502.

    Article  CAS  Google Scholar 

  33. Passerini N, Calogerà G, Albertini B, Rodriguez L. Melt granulation of pharmaceutical powders: a comparison of high-shear mixer and fluidised bed processes. Int J Pharm. 2010;391(1–2):177–86.

    Article  CAS  PubMed  Google Scholar 

  34. Suresh K, Vijayasree K, Devanna N, Murthy PN. Recent advances in pelletization techniques. Int J Pharm Sci Rev Res. 2014;27(1):217–23.

    Google Scholar 

  35. Barlow CG. The granulation of powders. Chem Eng. 1968;220:CE196–201.

    Google Scholar 

  36. Jacob M. Granulation equipment. In: Salman AD, Hounslow MJ, Seville JPK, editors. Handbook of powder technology. Amsterdam: Elsevier; 2007. p. 417–76.

    Google Scholar 

  37. Seem TC, Rowson NA, Ingram A, Huang Z, Yu S, de Matas M, Gabbott I, Reynolds GK. Twin screw granulation—a literature review. Powder Technol. 2015;276:89–102.

    Article  CAS  Google Scholar 

  38. Terrazas-Velarde K, Peglow M, Tsotsas E. Investigation of the kinetics of fluidized bed spray agglomeration based on stochastic methods. AIChE J. 2010;57:3012–26.

    Article  Google Scholar 

  39. Bilgili E, Rosen LA, Ko JS, Chen A, Smith EJ, Fliszar K, Wong G. Experimental study of fluidized bed co-granulation of two active pharmaceutical ingredients: an industrial scale-up perspective. Particul Sci Technol. 2011;29(3):285–309.

    Article  CAS  Google Scholar 

  40. Srivastava S, Mishra G. Fluid bed technology: overview and parameters for process selection. Int J Pharm Sci Drug Res. 2018;2(4):236–44.

    Google Scholar 

  41. Dara S, Dhamercherla S, Jadav SS, Babu CM, Ahsan MJ. Machine learning in drug discovery: a review. Artif Intell Rev. 2022;55(3):1947–99.

    Article  PubMed  Google Scholar 

  42. Reker D. Practical considerations for active machine learning in drug discovery. Drug Discov Today Technol. 2019;32–33:73–9.

    Article  PubMed  Google Scholar 

  43. Pu L, Naderi M, Liu T, et al. eToxPred: a machine learning-based approach to estimate the toxicity of drug candidates. BMC Pharmacol Toxicol. 2019;20(1):2.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Göller AH, Kuhnke L, Montanari F, et al. Bayer’s in silico ADMET platform: a journey of machine learning over the past two decades. Drug Discov Today. 2020;25(9):1702–9.

    Article  PubMed  Google Scholar 

  45. Davenport T, Kalakota R. The potential for artificial intelligence in healthcare. Future Healthc J. 2019;6(2):94–8.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Armitage H. Artificial intelligence rivals radiologists in screening X-rays for certain diseases. 2018. Available at: https://med.stanford.edu/news/all-news/2018/11/aioutperformedradiologists-in-screening-x-rays-for-certain-diseases.html. Accessed July 1, 2019.

  47. Krittanawong C, Zhang H, Wang Z, Aydar M, Kitai T. Artifcial intelligence in precision cardiovascular medicine. J Am Coll Cardiol. 2017;69:2657–64.

    Article  PubMed  Google Scholar 

  48. Daynac M, Cortes-Cabrera A, Prieto JM. Application of artificial intelligence to the prediction of the antimicrobial activity of essential oils. Evid Based Complement Altern Med. 2015;2015: 561024.

    Article  Google Scholar 

  49. Bohr A, Memarzadeh K. The rise of artificial intelligence in healthcare applications. Artificial Intelligence in Healthcare. 2020:25–60.

  50. Esteva A, Chou K, Yeung S, Nail N, Madani A, Mottaghi A, et al. Deep learning-enabled medical computer vision. NPJ Digit Med. 2021;4(1):5.

  51. Mirbabaie M, Stieglitz S, Frick NRJ. Artificial intelligence in disease diagnostics: a critical review and classification on the current state of research guiding future direction. Health Technol. 2021;11:693–731.

    Article  Google Scholar 

  52. Bender A, Cortes-Ciriano I. Artificial intelligence in drug discovery: what is realistic, what are illusions? Part 2: a discussion of chemical and biological data. Drug Discov Today. 2021;26(4):1040–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li J, Li Z, Ruan H, Gao Y, Hong Y, Shen L, Lin X. Improved direct compression properties of Gardeniaefructus water extract powders via fluid bed-mediated surface engineering. Pharm Dev Technol. 2022;27(6):725–39.

    Article  CAS  PubMed  Google Scholar 

  54. Kolluri S, Lin J, Liu R, Zhang Y, Zhang W. Machine learning and artificial intelligence in pharmaceutical research and development: a review. AAPS J. 2022;24(1):19.

    Article  PubMed  Google Scholar 

  55. Zimmerling A, Chen X. Bioprinting for combating infectious diseases. Bioprinting. 2020;20: e00104. https://doi.org/10.1016/j.bprint.2020.e00104.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade RK. Artificial intelligence in drug discovery and development. Drug Discov Today. 2021;26(1):80–93.

    Article  CAS  PubMed  Google Scholar 

  57. Nagy B, Galata DL, Farkas A, et al. Application of artificial neural networks in the process analytical technology of pharmaceutical manufacturing-a review. AAPS J. 2022;24:74.

    Article  PubMed  Google Scholar 

  58. Chen Z, Tang YZ, Zhou J, Huang P. An ensemble active learning for a fluidized bed granulation in the pharmaceutical industry. J Process Control. 2022;118:16–25.

    Article  CAS  Google Scholar 

  59. Lee H, Kim W. Comparison of target features for predicting drug-target interactions by deep neural network based on large-scale drug-induced transcriptome data. Pharmaceutics. 2019;11(8):377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Putin E, Asadulaev A, Ivanenkov Y, et al. Reinforced adversarial neural computer for de novo molecular design. J Chem Inf Model. 2018;58(6):1194–204.

    Article  CAS  PubMed  Google Scholar 

  61. Petrović J, Chansanroj K, Meier B, Ibrić S, Betz G. Analysis of fluidized bed granulation process using conventional and novel modeling techniques. Eur J Pharm Sci. 2011;44(3):227–34.

    Article  PubMed  Google Scholar 

  62. Landin M. Artificial intelligence tools for scaling up of high shear wet granulation process. J Pharm Sci. 2017;106(1):273–7.

    Article  CAS  PubMed  Google Scholar 

  63. Rüdisüli M, Schildhauer TJ, Biollaz SMA, van Ommen JR. Scale-up of bubbling fluidized bed reactors. A review. Powder Technol. 2012;217:21–38.

    Article  Google Scholar 

  64. Dixit R, Puthli S. Fluidization technologies: aerodynamic principles and process engineering. J Pharm Sci. 2009;98:3933–60.

    Article  CAS  PubMed  Google Scholar 

  65. Emami F, KeihanShokooh M, MostafaviYazdi SJ. Recent progress in drying technologies for improving the stability and delivery efficiency of biopharmaceuticals. J Pharm Investig. 2023;53:35–57.

    Article  CAS  PubMed  Google Scholar 

  66. Burggraeve A, Monteyne T, Vervaet C, Remon JP, De Beer T. Process analytical tools for monitoring, understanding, and control of pharmaceutical fluidized bed granulation: a review. Eur J Pharm Biopharm. 2013;83(1):2–15.

    Article  CAS  PubMed  Google Scholar 

  67. Aksu B, Paradkar A, de Matas M, Özer Ö, Güneri T, York P. A quality by design approach using artificial intelligence techniques to control the critical quality attributes of ramipril tablets manufactured by wet granulation. Pharm Dev Technol. 2013;18(1):236–45.

    Article  CAS  PubMed  Google Scholar 

  68. Petrović J, Chansanroj K, Meier B, Ibrić S, Betz G. Analysis of fluidized bed granulation process using conventional and novel modeling techniques. Eur J Pharm Sci. 2011;44(3):227–34.

    Article  PubMed  Google Scholar 

  69. Barriga R, Zahn M, Blumenthal R, Zamora D, Obon MR. Artificial intelligence used to optimize fluidized bed drying. Pharm Eng. 2022. https://ispe.org/pharmaceutical-engineering/november-december-2022/artificial-intelligence-used-optimize-fluid-bed. Accessed 10 Nov 2023.

  70. Ficzere M, Mészáros LA, Kállai-Szabó N, Kovács A, Antal I, Nagy ZK, Galata DL. Real-time coating thickness measurement and defect recognition of film coated tablets with machine vision and deep learning. Int J Pharm. 2022;623:121957.

    Article  CAS  PubMed  Google Scholar 

  71. Hirschberg C, Edinger M, Holmfred E, Rantanen J, Boetker J. Image-based artificial intelligence methods for product control of tablet coating quality. Pharmaceutics. 2020;12(9):877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Péterfi O, Madarász L, Ficzere M, Lestyán-Goda K, Záhonyi P, Erdei G, Sipos E, Nagy Z, Galata DL. In-line particle size measurement during granule fluidization using convolutional neural network-aided process imaging. Eur J Pharm Sci. 2023;189: 106563.

    Article  PubMed  Google Scholar 

  73. Watano A, Takashima H, Miyanami K. Control of moisture content in fluidized bed granulation by neural network. J Chem Eng Jpn. 1997;30(2):223–9.

    Article  CAS  Google Scholar 

  74. Alshawwa SZ, Kassem AA, Farid RM, Mostafa SK, Labib GS. Nanocarrier drug delivery systems: characterization, limitations, future perspectives and implementation of artificial intelligence. Pharmaceutics. 2022;14:883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Majumder J, Taratula O, Minko T. Nanocarrier-based systems for targeted and site specific therapeutic delivery. Adv Drug Deliv Rev. 2019;144:57–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kolluru L, Atre P, Rizvi S. Characterization and applications of colloidal systems as versatile drug delivery carriers for parenteral formulations. Pharmaceuticals. 2021;14:108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Vachhani S, Kleinstreuer C. Comparison of micron- and nano-particle transport in the human nasal cavity with a focus on the olfactory region. Comput Biol Med. 2021;128: 104103.

    Article  CAS  PubMed  Google Scholar 

  78. Tolentino S, Pereira MN, Cunha-Filho M, Gratieri T, Gelfuso GM. Targeted clindamycin delivery to pilosebaceous units by chitosan or hyaluronic acid nanoparticles for improved topical treatment of acne vulgaris. Carbohydr Polym. 2021;253: 117295.

    Article  CAS  PubMed  Google Scholar 

  79. Paiva-Santos AC, Herdade AM, Guerra C, Peixoto D, Pereira-Silva M, Zeinali M, Mascarenhas-Melo F, Paranhos A, Veiga F. Plant-mediated green synthesis of metal-based nanoparticles for dermopharmaceutical and cosmetic applications. Int J Pharm. 2021;597: 120311.

    Article  CAS  PubMed  Google Scholar 

  80. Wang H, Jia S, Li Z, Yucong D, Tao G, Zhao Z. A comprehensive review of Artificial Intelligence in Prevention Treatment of COVID-19 Pandemic. Front Genet. 2022;13:845305.

  81. Aware CB, Patil DN, Suryawanshi SS, Mali PR, Rane MR, Gurav RG, Jadhav JP. Natural bioactive products as promising therapeutics: a review of natural product-based drug development. S Afr J Bot. 2022;151:512–28.

    Article  CAS  Google Scholar 

  82. Patel V, Shah M. Artificial intelligence and machine learning in drug discovery and development. Intell Med. 2022;2(3):134–40.

    Article  Google Scholar 

  83. Abu-Elezz I, Hassan A, Nazeemudeen A, et al. The benefits and threats of blockchain technology in healthcare: a scoping review. Int J Med Inform. 2020;142: 104246.

    Article  PubMed  Google Scholar 

  84. Sahu A, Mishra J, Kushwaha N. Artificial Intelligence (AI) in Drugs and Pharmaceuticals. Comb Chem High Throughput Screen. 2022;25(11):1818–37.

    Article  CAS  PubMed  Google Scholar 

  85. Verma D, Dong Y, Sharma M, Chaudhary AK. Advanced processing of 3D printed biocomposite materials using artificial intelligence. Mater Manuf Process. 2022;37(5):518–38.

    Article  CAS  Google Scholar 

  86. Park BJ, Choi HJ, Moon SJ, et al. Pharmaceutical applications of 3D printing technology: current understanding and future perspectives. J Pharm Investig. 2018;49(6):575–85.

    Google Scholar 

  87. Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R. Polymers for 3D printing and customized additive manufacturing. Chem Rev. 2017;117(15):10212–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rayna T, Striukova L. From rapid prototyping to home fabrication: how 3D printing is changing business model innovation. Technol Forecast Soc Chang. 2016;102:214–24.

    Article  Google Scholar 

  89. Bharadwaj R. Artificial intelligence applications in additive manufacturing (3D Printing). 2019. https://emerj.com/ai-sector-overviews/artificial-intelligence-applications-additive-manufacturing-3d-printing/. Accessed 15 Nov 2023.

  90. Menon A, Póczos B, Feinberg AW, Washburn NR. Optimization of silicone 3D printing with hierarchical machine learning. 3D Print Addit Manuf. 2019;6(4):181–9.

    Article  Google Scholar 

  91. Kumar S, Gopi T, Harikeerthana N, Gupta MK, Gaur V, Krolczyk GM, Wu CS. Machine learning techniques in additive manufacturing: a state-of-the-art review on design, processes and production control. J Intell Manuf. 2023;34:21–55.

    Article  Google Scholar 

  92. Qi X, Chen G, Li Y, Cheng X, Li C. Applying neural-network-based machine learning to additive manufacturing: current applications, challenges, and future perspectives. Engineering. 2019;5(4):721–9.

    Article  Google Scholar 

  93. Venkat V, Mann V. Artificial intelligence in reaction prediction and chemical synthesis. Curr Opin Chem Eng. 2022;36: 100749.

    Article  Google Scholar 

  94. Jisun K, McFee M, Fang Q, Abdin O, Kim PM. Computational and artificial intelligence-based methods for antibody development. Trends Pharmacol Sci. 2023;44(3):175–89.

    Article  Google Scholar 

  95. Mei G. Research on big data artificial intelligence technology based on deep learning. In: Kountchev R, Nakamatsu K, Wang W, Kountcheva R, editors. Proceedings of the World Conference on Intelligent and 13-D Technologies (WCI3DT 2022). 2023. p. 243–50.

  96. Kumar S, Shah P. A review on artificial intelligence and machine learning to improve cancer management and drug discovery. Int J Res Appl Sci Biotechnol. 2022;9(3):149–56.

    Google Scholar 

  97. Buvailo A. Companies applying artificial intelligence in drug discovery and development BioPharmaTrend. https://www.biopharmatrend.com/m/companies/ai/. Accessed 17 Nov 2023.

  98. Xu M, Heng PWS, Liew CV. Evaluation of coat uniformity and taste-masking efficiency of irregular-shaped drug particles coated in a modified tangential spray fluidized bed processor. Expert Opin Drug Deliv. 2015;12(10):1597–606.

    Article  CAS  PubMed  Google Scholar 

  99. Shao Q, Rowe RC, York P. Data mining of fractured experimental data using neurofuzzy logic-discovering and integrating knowledge hidden in multiple formulation databases for a fluid-ded granulation process. J Pharm Sci. 2008;97(6):2091–101.

    Article  CAS  PubMed  Google Scholar 

  100. Guignon B, Duquenoy A, Dumoulin ED. Fluid bed encapsulation of particles: principles and practice. Dry Technol. 2002;20(2):419–47.

    Article  CAS  Google Scholar 

  101. Karimi M, Vaferi B, Hosseini SH, Rasteh M. Designing an efficient artificial intelligent approach for estimation of hydrodynamic characteristics of tapered fluidized bed from its design and operating parameters. Ind Eng Chem Res. 2018;57(1):259–67.

    Article  CAS  Google Scholar 

  102. Lou H, Lian B, Hageman MJ. Applications of machine learning in solid oral dosage form development. J Pharm Sci. 2021;10(9):3150–65.

    Article  Google Scholar 

  103. Maharjan R, Jeong SH. Application of different models to evaluate the key factors of fluidized bed layering granulation and their influence on granule characteristics. Powder Technol. 2022;408:117–737.

    Article  Google Scholar 

  104. Chen T, Liu L, Zhang L, Lu T, Matos RL, Jiang C, Lin Y, Yuan T, Ma Z, He H, Zhuang X, Li Q. Optimization of the supercritical fluidized bed process for sirolimus coating and drug release. Int J Pharm. 2020;589: 119809.

    Article  CAS  PubMed  Google Scholar 

  105. Stegemann S, Faulhammer E, Pinto JT, Paudel A. Focusing on powder processing in dry powder inhalation product development, manufacturing and performance. Int J Pharm. 2022;614: 121445.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India, for their ongoing assistance.

Funding

The author(s) reported no funding associated with the work featured in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh K. Mishra.

Ethics declarations

Conflict of Interests

Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gosavi, A.A., Nandgude, T.D., Mishra, R.K. et al. Exploring the Potential of Artificial Intelligence as a Facilitating Tool for Formulation Development in Fluidized Bed Processor: a Comprehensive Review. AAPS PharmSciTech 25, 111 (2024). https://doi.org/10.1208/s12249-024-02816-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-024-02816-8

Keywords

Navigation