Skip to main content
Log in

Skin- and Eco-Friendly Hand Sanitizer: A Novel Composition of Natural Extracts to Prevent the Spread of Respiratory Viruses

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Respiratory diseases caused by viruses are a serious global health threat. Although the use of hand sanitizers containing alcohol and synthetic antiseptic agents is recognized as an effective, simple, and low-cost measure to combat viral transmission, they can harm human health and the environment. Thus, this work aimed to study the efficacy of combining Camellia sinensis and Chamomilla recutita extracts in a skin- and eco-friendly leave-on hand sanitizer to prevent the spread of respiratory viruses. An oil-in-water emulsion containing C. recutita oily extract (5.0%), C. recutita glycolic extract (0.2%) and C. sinensis glycolic extract (5.0%) showed virucidal activity against HAdV-2 (respiratory virus) and two surrogate viruses of SARS-CoV-2 (HSV-1 and MVH-3), showing great potential to prevent the spread of respiratory viruses. These natural extracts combined are also promising to combat a broad spectrum of other viruses, in the form of antiseptic mouthwashes or throat sprays, surface disinfectants, and veterinary products, among others. Complementally, the developed hand sanitizer demonstrated efficacy against bacteria and fungus.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Jin X, Ren J, Li R, Gao Y, Zhang H, Li J, et al. Global burden of upper respiratory infections in 204 countries and territories, from 1990 to 2019. EClinicalMedicine [Internet]. 2021;37:100986. https://doi.org/10.1016/j.eclinm.2021.100986.

  2. Foro de las Sociedades Respiratorias Internacionales. El Impacto Gobal de La Enfermedad Respiratoria. 2nd ed. Asociación Latinoamericana de Tórax; 2017. p. 1–45.

  3. Beigel JH, Nam HH, Adams PL, Krafft A, Ince WL, El-Kamary SS, et al. Advances in respiratory virus therapeutics – A meeting report from the 6th isirv Antiviral Group conference. Antiviral Res. 2019;1(167):45–67.

    Article  Google Scholar 

  4. World Health Organization. Coronavirus disease 2019 (COVID-19) - Situation Report – 51 [Internet]. World Health Organization. 2020 [cited 2020 May 22]. Available from: https://iris.who.int/handle/10665/331475sfvrsn¼1ba62e57_4.

  5. World Health Organization. WHO Coronavirus (COVID-19) Dashboard [Internet]. 2022 [cited 2022 Oct 14]. Available from: https://covid19.who.int/.

  6. Mo Y, Pham TM, Lim C, Horby P, Stewardson AJ, Harbarth S, et al. The effect of hand hygiene frequency on reducing acute respiratory infections in the community: a meta-analysis. Epidemiol Infect. 2022;150:e79.

  7. Zhao H, Jatana S, Bartoszko J, Loeb M. Nonpharmaceutical interventions to prevent viral respiratory infection in community settings: an umbrella review. ERJ Open Res [Internet]. 2022;8(2):00650–2021. https://doi.org/10.1183/23120541.00650-2021.

  8. World Health Organization. WHO save lives: clean your hands in the context of COVID-19 [Internet]. 2020 [cited 2020 Sep 3]. p. 2. Available from: https://www.who.int/publications/m/item/save-lives-clean-your-hands-in-the-context-of-covid-19.

  9. Lachapelle JM. Antiseptics and Disinfectants. In: John SM, Johansen JD, Rustemeyer T, Elsner P, Maibach HI, editors. Kanerva’s Occupational Dermatology. 3rd ed. Cham: Springer; 2020. p. 493–506.

    Chapter  Google Scholar 

  10. Singh M, Pawar M, Bothra A, Choudhary N. Overzealous hand hygiene during the COVID 19 pandemic causing an increased incidence of hand eczema among general population. J Am Acad Dermatol. 2020;83(1):e37-41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lan J, Song Z, Miao X, Li H, Li Y, Dong L, et al. Skin damage among health care workers managing coronavirus disease-2019. J Am Acad Dermatol. 2020;82(5):1215–6. https://doi.org/10.1016/j.jaad.2020.03.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Erdem Y, Inal S, Sivaz O, Copur S, Boluk KN, Ugurer E, et al. How does working in pandemic units affect the risk of occupational hand eczema in healthcare workers during the coronavirus disease-2019 (COVID-19) pandemic: A comparative analysis with nonpandemic units. Contact Dermatitis. 2021;85(2):215–24.

  13. World Health Organization. WHO Guidelines on Hand Hygiene in Health Care [Internet].1st ed. Genebra: World Health Organization; 2009;270 http://whqlibdoc.who.int/publications/2009/9789241597906_eng.pdf.

  14. Pradhan D, Biswasroy P, Kumar Naik P, Ghosh G, Rath G. A Review of Current Interventions for COVID-19 Prevention. Arch Med Res [Internet]. 2020 [cited 2020 Aug 3];51(5):363–74. https://linkinghub.elsevier.com/retrieve/pii/S0188440920306159.

  15. Lee YH, Jang YH, Kim YS, Kim J, Seong BL. Evaluation of green tea extract as a safe personal hygiene against viral infections. J Biol Eng. 2018;12(1):4–13.

    Article  Google Scholar 

  16. Albeshri A, Baeshen NA, Bouback TA, Aljaddawi AA. Evaluation of cytotoxicity and antiviral activity of Rhazya stricta Decne leaves extract against influenza A/PR/8/34 (H1N1). Saudi J Biol Sci [Internet]. 2022;29(9):103375. https://doi.org/10.1016/j.sjbs.2022.103375.

  17. Cho WK, Ma JY. Antiviral activity of Epimedium koreanum Nakai water extract against influenza viruses. Biomed Pharmacother [Internet]. 2022;146:112581. https://doi.org/10.1016/j.biopha.2021.112581.

  18. Cho WK, Yang HJ, Ma JY. Lotus (Nelumbo nucifera Gaertn.) leaf water extracts suppress influenza a viral infection via inhibition of neuraminidase and hemagglutinin. J Funct Foods [Internet]. 2022;91(7):105019. https://doi.org/10.1016/j.jff.2022.105019.

  19. Kostikova VA, Zarubaev VV, Esaulkova IL, Sinegubova EO, Kadyrova RA, Shaldaeva TM, et al. The antiviral, antiradical, and phytochemical potential of dry extracts from Spiraea hypericifolia, S. media, and S. salicifolia (Rosaceae). South African J Bot. 2022;147:215–22.

    Article  CAS  Google Scholar 

  20. Kwon EB, Kim YS, Hwang YH, Kim B, Lee SB, Park SK, et al. Antiviral activity of soybean GL 2626/96 (Glycine max) ethanolic extract against influenza A virus in vitro and in vivo. Biomed Pharmacother [Internet]. 2022;156:113780. https://doi.org/10.1016/j.biopha.2022.113780.

  21. Lebdah M, Tantawy L, Elgamal AM, Abdelaziz AM, Yehia N, Alyamani AA, et al. The natural antiviral and immune stimulant effects of Allium cepa essential oil onion extract against virulent Newcastle disease virus. Saudi J Biol Sci. 2022;29(2):1239–45. https://doi.org/10.1016/j.sjbs.2021.09.033.

    Article  CAS  PubMed  Google Scholar 

  22. Lopes GFM, Lima WG, Santos FRS, Nunes DAF, Passos MJF, Fernandes SOA, et al. Anti-Mayaro virus activity of a hydroethanolic extract from Fridericia chica (Bonpl.) L. G. Lohmann leaves. J Ethnopharmacol. 2022;299:115685.

  23. Maphetu N, Unuofin JO, Masuku NP, Olisah C, Lebelo SL. Medicinal uses, pharmacological activities, phytochemistry, and the molecular mechanisms of Punica granatum L. (pomegranate) plant extracts: A review. Biomed Pharmacother. 2022;153(April):113256. https://doi.org/10.1016/j.biopha.2022.113256.

    Article  CAS  PubMed  Google Scholar 

  24. Burleson FG, Chambers TM, Wiedbrauk DL. Virology: A Laboratory Manual. San Diego: Academic Press; 1992. p. 250.

    Google Scholar 

  25. Singleton VL, Orthofer R, Lamuela-Raventós RM. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In: Packer L, editor. Methods in Enzymology. Academic Press; 1999. p. 152–78.

    Google Scholar 

  26. Rombaut N, Savoire R, Thomasset B, Castello J, Van Hecke E, Lanoisellé JL. Optimization of oil yield and oil total phenolic content during grape seed cold screw pressing. Ind Crops Prod. 2015;63:26–33. https://doi.org/10.1016/j.indcrop.2014.10.001.

    Article  CAS  Google Scholar 

  27. Vichai V, Kirtikara K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc. 2006;1(3):1112–6.

    Article  CAS  PubMed  Google Scholar 

  28. Silva IT, Costa GM, Stoco PH, Schenkel EP, Reginatto FH, Simões CMO. In vitro antiherpes effects of a C-glycosylflavonoid-enriched fraction of Cecropia glaziovii Sneth. Lett Appl Microbiol. 2010;51(2):143–8.

    CAS  PubMed  Google Scholar 

  29. Cosmetic Organic and Natural Standard. COSMOS-Standard. 3.1 ed. 2020;46. https://www.cosmos-standard.org/en/documents/.

  30. Deutsches Institut für Normung. Chemical disinfectants and antiseptics – Quantitative suspension test for the evaluation of virucidal activity in the medical area – Test method and requirements (Phase 2/Step 1). DIN EN 14476:2013+A2:2019. 2019.

  31. American Society for Testing and Materials. Standard guide for assessment of antimicrobial activity using a Time-Kill procedure. E2325-23. West Conshohocken: American Society for Testing and Materials; 2023. https://doi.org/10.1520/E2315-16.

  32. ANVISA. Agência Nacional de Vigilância Sanitária. Farmacopeia Brasileira. 6th ed. Vol. 1. Brasília: Agência Nacional de Vigilância Sanitária; 2019. p. 1–523.

  33. Kaihatsu K, Yamabe M, Ebara Y. Antiviral mechanism of action of epigallocatechin-3-O-gallate and its fatty acid esters. Molecules. 2018;23(10):15–9.

    Article  Google Scholar 

  34. de Carvalho APA, Conte-Junior CA. Health benefits of phytochemicals from Brazilian native foods and plants: Antioxidant, antimicrobial, anti-cancer, and risk factors of metabolic/endocrine disorders control. Trends Food Sci Technol. 2021;111:534–48. https://doi.org/10.1016/j.tifs.2021.03.006.

    Article  CAS  Google Scholar 

  35. Montenegro-Landívar MF, Tapia-Quirós P, Vecino X, Reig M, Valderrama C, Granados M, et al. Polyphenols and their potential role to fight viral diseases: An overview. Sci Total Environ [Internet]. 2021;801:149719. https://doi.org/10.1016/j.scitotenv.2021.149719.

  36. Salles TS, Meneses MDF, Caldas LA, Sá-Guimarães TE, de Oliveira DM, Ventura JA, et al. Virucidal and antiviral activities of pomegranate (Punica granatum) extract against the mosquito-borne Mayaro virus. Parasites and Vectors. 2021;14(1):1–8. https://doi.org/10.1186/s13071-021-04955-4.

    Article  CAS  Google Scholar 

  37. Tirado-Kulieva VA, Hernández-Martínez E, Choque-Rivera TJ. Phenolic compounds versus SARS-CoV-2: An update on the main findings against COVID-19. Heliyon. 2022;8(9):e10702.

  38. Lorencini M, Brohem CA, Dieamant GC, Zanchin NIT, Maibach HI. Active ingredients against human epidermal aging. Ageing Res Rev. 2014;15(1):100–15. https://doi.org/10.1016/j.arr.2014.03.002.

    Article  CAS  PubMed  Google Scholar 

  39. Zillich OV, Schweiggert-Weisz U, Eisner P, Kerscher M. Polyphenols as active ingredients for cosmetic products. Int J Cosmet Sci. 2015;37:455–64. https://doi.org/10.1111/ics.12218.

    Article  CAS  PubMed  Google Scholar 

  40. Ganesan P, Choi DK. Current application of phytocompound-based nanocosmeceuticals for beauty and skin therapy. Int J Nanomedicine. 2016;11:1987–2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Simitzis P. Agro-Industrial By-Products and Their Bioactive Compounds—An Ally against Oxidative Stress and Skin Aging. Cosmetics [Internet]. 2018;5(4):58. https://doi.org/10.3390/cosmetics5040058.

  42. Hubner A, Sobreira F, Neto AV, de Oliveira Pinto CAS, Dario MF, Díaz IEC, et al. The synergistic behavior of antioxidant phenolic compounds obtained fromwinemaking waste’s valorization, increased the efficacy of a sunscreen system. Antioxidants. 2019;8(11):530.

  43. Zielinski AAF, Granato D, Alberti A, Nogueira A, Demiate IM, Haminiuk CWI. Modelling the extraction of phenolic compounds and in vitro antioxidant activity of mixtures of green, white and black teas (Camellia sinensis L. Kuntze). J Food Sci Technol. 2015;52(11):6966–77.

    Article  CAS  Google Scholar 

  44. Tang GY, Zhao CN, Xu XY, Gan RY, Cao SY, Liu Q, et al. Phytochemical Composition and Antioxidant Capacity of 30 Chinese Teas. Antioxidants [Internet]. 2019;8(6):180. www.mdpi.com/journal/antioxidants.

  45. Santos JS, Escher GB, Vieira do Carmo M, Azevedo L, Boscacci Marques M, Daguer H, et al. A new analytical concept based on chemistry and toxicology for herbal extracts analysis: From phenolic composition to bioactivity. Food Res Int [Internet]. 2020;132:109090. https://doi.org/10.1016/j.foodres.2020.109090.

  46. Paiva L, Rego C, Lima E, Marcone M, Baptista J. Comparative analysis of the polyphenols, caffeine, and antioxidant activities of green tea, white tea, and flowers from azorean camellia sinensis varieties affected by different harvested and processing conditions. Antioxidants. 2021;10(2):1–16. https://doi.org/10.3390/antiox10020183.

    Article  CAS  Google Scholar 

  47. Wang Y, Ho CT. Polyphenols chemistry of tea and coffee: A century of progress. J Agric Food Chem. 2009;57(18):8109–14.

    Article  CAS  PubMed  Google Scholar 

  48. Xu J, Xu Z, Zheng W. A review of the antiviral role of green tea catechins. Molecules. 2017;22(8):1–18.

    Article  Google Scholar 

  49. Fotakis C, Tsigrimani D, Tsiaka T, Lantzouraki DZ, Strati IF, Makris C, et al. Metabolic and antioxidant profiles of herbal infusions and decoctions. Food Chem. 2016;211:963–71. https://doi.org/10.1016/j.foodchem.2016.05.124.

    Article  CAS  PubMed  Google Scholar 

  50. Sentkowska A, Biesaga M, Pyrzynska K. Effects of brewing process on phenolic compounds and antioxidant activity of herbs. Food Sci Biotechnol. 2016;25(4):965–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sotiropoulou NS, Megremi SF, Tarantilis P. Evaluation of antioxidant activity, toxicity, and phenolic profile of aqueous extracts of chamomile (Matricaria chamomilla L.) and sage (Salvia ocinalis L.) prepared at different temperatures. Appl Sci. 2020;10(7):2270. https://doi.org/10.3390/app10072270.

  52. Kolodziejczyk-Czepas J, Bijak M, Saluk J, Ponczek MB, Zbikowska HM, Nowak P, et al. Radical scavenging and antioxidant effects of Matricaria chamomilla polyphenolic-polysaccharide conjugates. Int J Biol Macromol. 2015;72:1152–8. https://doi.org/10.1016/j.ijbiomac.2014.09.032.

    Article  CAS  PubMed  Google Scholar 

  53. Eruygur N, Dincel NGK, Kutuk N. Modeling of Total Phenolic contents in Various Tea samples by Experimental Design Methods. Open Chem. 2018;16:738–44.

    Article  CAS  Google Scholar 

  54. Indrayanto G, Putra GS, Suhud F. Validation of in-vitro bioassay methods: Application in herbal drug research. Profiles Drug Subst Excip Relat Methodol [Internet]. 2021;46:273–307. https://doi.org/10.1016/bs.podrm.2020.07.005.

  55. Kaihatsu K, Mori S, Matsumura H, Daidoji T, Kawakami C, Kurata H, et al. Broad and potent anti-influenza virus spectrum of epigallocatechin-3-O-gallate-monopalmitate. J Mol Genet Med. 2009;03(02):195–7.

    CAS  Google Scholar 

  56. Vázquez-Calvo Á, de Oya NJ, Martín-Acebes MA, Garcia-Moruno E, Saiz JC. Antiviral properties of the natural polyphenols delphinidin and epigallocatechin gallate against the flaviviruses West Nile Virus, Zika Virus, and Dengue Virus. Front Microbiol. 2017;8:1314.

  57. Yucharoen R, Chansakaow S, Tragoolpua Y. Inhibitory effect of aromatic herbs, lavender, sage and chamomile against herpes simplex virus infection. African J Biotechnol. 2011;10(68):15394–401.

    Article  CAS  Google Scholar 

  58. Nikolova I, Paunova-Krasteva T, Petrova Z, Grozdanov P, Nikolova N, Tsonev G, et al. Bulgarian Medicinal Extracts as Natural Inhibitors with Antiviral and Antibacterial Activity. Plants. 2022;11(13):1–18.

    Article  Google Scholar 

  59. Ultrus Prospector. Personal Care & Cosmetics[Internet]. 2022 [cited 2022 Oct 15]. Available from: https://www.ulprospector.com/pt/la/PersonalCare.

  60. Beiu C, Mihai M, Popa L, Cima L, Popescu MN. Frequent hand washing for COVID-19 prevention can cause hand dermatitis: management tips. Cureus. 2020;12(4):e7506.

  61. Rundle CW, Presley CL, Militello M, Barber C, Powell DL, Jacob SE, et al. Hand Hygiene During COVID-19: Recommendations from the American Contact Dermatitis Society. J Am Acad Dermatol. 2020;83(6):1730–7. https://doi.org/10.1016/j.jaad.2020.07.057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Simpson EL, Chalmers JR, Hanifin JM, Thomas KS, Cork MJ, McLean WHI, et al. Emollient enhancement of the skin barrier from birth offers effective atopic dermatitis prevention. J Allergy Clin Immunol. 2014;134(4):818–23. https://doi.org/10.1016/j.jaci.2014.08.005.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ansari SA. Skin pH and Skin Flora. In: Barrel AO, Paye M, Maicah HI, editors. Handbook of Cosmetic Science and Technology. 4th ed. Nova Iorque: Informa Healthcare; 2014. p. 163–73.

    Google Scholar 

  64. Albrecht T, Fons M, Boldogh I, Rabson AS. Effects on cells. In: Baron S, editor. Medical Microbiology. 4th ed. Galveston: University of Texas Medical Branch at Galveston; 1996. Chapter 44.

  65. Eggers M, Jungke P, Wolkinger V, Bauer R, Kessler U, Frank B. Antiviral activity of plant juices and green tea against SARS-CoV-2 and influenza virus in vitro. Phyther Res. 2022;36:2109–15. https://doi.org/10.1101/2020.10.30.360545.

    Article  CAS  Google Scholar 

  66. Qian S, Fan W, Qian P, Zhang D, Wei Y, Chen H, et al. Apigenin restricts FMDV infection and inhibits viral IRES driven translational activity. Viruses. 2015;7(4):1613–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Randazzo W, Falcó I, Aznar R, Sánchez G. Effect of green tea extract on enteric viruses and its application as natural sanitizer. Food Microbiol. 2017;66:150–6.

    Article  CAS  PubMed  Google Scholar 

  68. Ahmed W, Bertsch PM, Bibby K, Haramoto E, Hewitt J, Huygens F, et al. Decay of SARS-CoV-2 and surrogate murine hepatitis virus RNA in untreated wastewater to inform application in wastewater-based epidemiology. Environ Res [Internet]. 2020;191:110092. https://doi.org/10.1016/j.envres.2020.110092.

  69. Torii S, Oishi W, Zhu Y, Thakali O, Malla B, Yu Z, et al. Comparison of five polyethylene glycol precipitation procedures for the RT-qPCR based recovery of murine hepatitis virus, bacteriophage phi6, and pepper mild mottle virus as a surrogate for SARS-CoV-2 from wastewater. Sci Total Environ [Internet]. 2022;807(Pt 2):150722. https://doi.org/10.1016/j.scitotenv.2021.150722.

  70. Dhakal J, Jia M, Joyce JD, Moore GA, Ovissipour R, Bertke AS. Survival of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and herpes simplex virus 1 (HSV-1) on foods stored at refrigerated temperature. Foods. 2021;10(5):1005.

  71. Mussi L, Baby AR, Camargo Junior FB, Padovani G, Sufi B da S, Magalhães WV. Propanediol (and) caprylic acid (and) xylitol as a new single topical active ingredient against acne: In vitro and in vivo efficacy assays. Molecules. 2021;26(21):6704.

  72. Tulsawani R, Verma K, Kohli E, Sharma P, Meena YS, Amitabh, et al. Anti-microbial efficacy of a scientifically developed and standardized herbal-alcohol sanitizer. Arch Microbiol. 2024;206(77):1–16. https://doi.org/10.1007/s00203-023-03805-4.

    Article  CAS  Google Scholar 

  73. Dormstetter K, Olson LKM, Bennaars-Eiden A, Bernatchez SF. Evaluation of activity and potential for development of antimicrobial resistance to a new tinted 2% chlorhexidine gluconate/70% isopropyl alcohol film-forming sterile preoperative skin preparation. J Glob Antimicrob Resist. 2019;17:160–7. https://doi.org/10.1016/j.jgar.2018.12.008.

    Article  PubMed  Google Scholar 

  74. Czerwinski SE, Cozean J, Cozean C. Novel water-based antiseptic lotion demonstrates rapid, broad-spectrum kill compared with alcohol antiseptic. J Infect Public Health. 2014;7:199–204. https://doi.org/10.1016/j.jiph.2014.01.002.

    Article  PubMed  Google Scholar 

  75. Chhabra RP, Richardson JF. Non-newtonian fluid behaviour. In: Richardson RPCF, editor. Non-Newtonian Flow and Applied Rheology. 2nd ed. Oxford: Butterworth Heinemann; 2008. p. 1–55.

    Google Scholar 

  76. McIntosh K, Smith A, Young LK, Leitch MA, Tiwari AK, Reddy CM, et al. Alkenones as a promising green alternative for waxes in cosmetics and personal care products. Cosmetics. 2018;5(2):34. https://doi.org/10.3390/cosmetics5020034.

  77. D’Angelo Costa GM, Maia Campos PMBG. Development of Photoprotective Formulations: Influence of Formulation Composition on the SPF and Mechanical Properties. AAPS PharmSciTech. 2023;24(97):1–11. https://doi.org/10.1208/s12249-023-02558-z.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to LAMEB—Multipurpose Laboratory for Biological Studies, Federal University of Santa Catarina, Brazil—for the assistance provided during the virucidal assays and Analysis Center of the Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Brazil—for the support in rotational rheological analysis.

Funding

The authors would like to thank the funding agencies CAPES/MEC (Ministry of Education) and CNPq/MCTI (Ministry of Science, Technology, and Innovation) for the scholarships awarded. The authors also thank the companies Heide, Colormix, Inolex, Razzini & Partners, Dinaco, and Sarfam for donating supplies employed in this study.

Author information

Authors and Affiliations

Authors

Contributions

Marina Gomes: Conceptualization, Methodology, Investigation, Data curation, Formal analysis, Validation, Writing—original draft. Isabella Dai Prá Zuchi: Investigation. Catielen Paula Pavi: Investigation. Gislaine Fongaro: Conceptualization, Resources, Supervision, Methodology, Investigation, Formal analysis, Writing—review & editing. Izabella Thaís da Silva: Conceptualization, Supervision, Methodology, Formal analysis, Writing—review & editing. Bianca Ramos Pezzini: Conceptualization, Resources, Supervision, Methodology, Formal analysis, Writing—review & editing.

Corresponding author

Correspondence to Bianca Ramos Pezzini.

Ethics declarations

Competing Interest

The authors have declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, M., Zuchi, I.D.P., Pavi, C.P. et al. Skin- and Eco-Friendly Hand Sanitizer: A Novel Composition of Natural Extracts to Prevent the Spread of Respiratory Viruses. AAPS PharmSciTech 25, 98 (2024). https://doi.org/10.1208/s12249-024-02808-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-024-02808-8

Keywords

Navigation