Skip to main content
Log in

Novel Drug Delivery Approaches for the Localized Treatment of Cervical Cancer

  • Review Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Cervical cancer (CC) is the fourth leading cancer type in females globally. Being an ailment of the birth canal, primitive treatment strategies, including surgery, radiation, or laser therapy, bring along the risk of infertility, neonate mortality, premature parturition, etc. Systemic chemotherapy led to systemic toxicity. Therefore, delivering a smaller cargo of therapeutics to the local site is more beneficial in terms of efficacy as well as safety. Due to the regeneration of cervicovaginal mucus, conventional dosage forms come with the limitations of leaking, the requirement of repeated administration, and compromised vaginal retention. Therefore, these days novel strategies are being investigated with the ability to combat the limitations of conventional formulations. Novel carriers can be engineered to manipulate bioadhesive properties and sustained release patterns can be obtained thus leading to the maintenance of actives at therapeutic level locally for a longer period. Other than the purpose of CC treatment, these delivery systems also have been designed as postoperative care where a certain dose of antitumor agent will be maintained in the cervix postsurgical removal of the tumor. Herein, the most explored localized delivery systems for the treatment of CC, namely, nanofibers, nanoparticles, in situ gel, liposome, and hydrogel, have been discussed in detail. These carriers have exceptional properties that have been further modified with the aid of a wide range of polymers in order to serve the required purpose of therapeutic effect, safety, and stability. Further, the safety of these delivery systems toward vital organs has also been discussed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

None.

Abbreviations

CC:

Cervical cancer

HPV:

Human papilloma virus

Pt(IV):

Platinum (IV)

DCA:

Dichloroacetate

DOX:

Doxorubicin

PLA:

Polylactide

PEO:

Poly (ethylene oxide)

PVA:

Polyvinylalcohol

PEG:

Polyethylene glycol

PCL:

Polycaprolactone

PLGA:

Poly[(d,l)-lactide-co-glycolide]

PLLA:

Poly-L-lactide

PVP:

Polyvinyl pyrrolidone

ICG:

Indocyanine green

MSN:

Mesoporous silica nanoparticles

CA4:

Combretastatin A4

FLU:

Fluorescein

Flu:

Fluorescein sodium

HTLC:

Heat-activated thermosensitive liposome

CDDP:

Cisplatin

SEM:

Scanning electron microscopy

AG:

Andrographolide

TEM:

Transmission electron microscopy

PTCT:

Photothermal chemotherapy

H&E:

Hematoxylin and eosin

PBS:

Phosphate-buffered saline

MWCNT:

Multiwalled carbon nanotubes

5FU:

Fluorouracil

F fibers:

Dual drug-loaded multilayered fibers

S-TEL-PEG-CNPs:

Soluble telmisartan entrapped into PEG-conjugated chitosan nanoparticles

API:

Active pharmaceutical ingredient

GEM-HNPs:

Gemcitabine-loaded hybrid nanoparticles

GEM:

Gemcitabine

AuNPs:

Gold nanoparticles

MTT:

Thiazolyl blue tetrazolium bromide

GNPs-GA:

Gallic acid-conjugated gold nanoparticles

BisBAL NPs:

Neo-Poly gramicidin mixture and bismuth nanoparticles

AgNPs:

Silver nanoparticles

SM:

Snail mucus

AgNP-SM:

Silver nanoparticle-snail mucus nanocomposite powder

CS:

Chitosan

FeGI:

Iron(II) glyconate dehydrate

TV:

Toad venom

SLN:

Solid lipid nanoparticles

NR:

Nanorealgar

TV-SLN:

Toad venom-loaded solid lipid nanoparticles

TV-SLN/NR:

Combination of TV-SLN and NR

NC:

Nanocrystals

NC@PDA-NH2 :

Dopamine-coated nanocrystals followed by acid treatment

PYT:

Phytantriol

SMH:

Sinomenine hydrochloride

PILG:

PYT-based in situ liquid crystal gel

RTX:

Raltitrexed

4 CLH:

Drug-loaded hydrogel containing 4% crosslinker

8 CLH:

Drug-loaded hydrogel containing 8% crosslinker

PAA:

Poly(acrylic acid)

TAX:

Paclitaxel

SVF:

Simulated vaginal fluid

Hac/NaAc:

Acetic acid/sodium acetate

QCS:

N,O-Oleoyl chitosan

Lip-QCS:

QCS incorporated into liposomes

Lip:

Liposomes

Lip-QCS-Cisplatin:

Cisplatin-loaded Lip-QCS

HT:

Hyperthermia

RNA:

Ribonucleic acid

siRNAs:

Small interfering RNA

References

  1. Gupta S, Gupta MK. Possible role of nanocarriers in drug delivery against cervical cancer. Nano Rev Exp. 2017;8(1):1335567.

    PubMed  PubMed Central  Google Scholar 

  2. Medina-Alarcón KP, Voltan AR, Fonseca-Santos B, Moro IJ, de Oliveira SF, Chorilli M, et al. Highlights in nanocarriers for the treatment against cervical cancer. Mater Sci Eng C. 2017;80:748–59.

    Google Scholar 

  3. Ghosh S, Jayaram P, Kabekkodu SP, Satyamoorthy K. Targeted drug delivery in cervical cancer: current perspectives. Eur J Pharmacol. 2022;917(February):1–8.

    Google Scholar 

  4. Cancer stat facts: cervical cancer. U.S. Department of Health and Human Services, National Cancer Institute. 2020. Available from: https://seer.cancer.gov/statfacts/html/cervix.html. Accessed 17 March 2024.

  5. Cervical cancer WHO. World Health Organization, South-East Asia. 2022. Available from: https://www.who.int/southeastasia/activities/cervical-cancer#:~:text=Keyfacts,cancerscausedbythevirus. Accessed 17 March 2024.

  6. Cervical Cancer AACR. American Association for Cancer Research. 2023. Available from: https://www.aacr.org/patients-caregivers/cancer/cervical-cancer/. Accessed 17 March 2024.

  7. Moore DH. Cervical cancer. 2006;107(5):1152–61.

    Google Scholar 

  8. Fowler JR, Maani EV, Dunton CJ, Gasalberti DP, Jack BW. Cervical cancer. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 [cited 2024 Feb 6]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK431093/.

  9. Basoya S, Anjankar A. Cervical cancer: early detection and prevention in reproductive age group. Cureus [Internet]. 2022 Nov 9 [cited 2024 Feb 6]; Available from: https://www.cureus.com/articles/121671-cervical-cancer-early-detection-and-prevention-in-reproductive-age-group.

  10. Bhatla N, Singhal S. Primary HPV screening for cervical cancer. Best Pract Res Clin Obstet Gynaecol. 2020;65:98–108.

    PubMed  Google Scholar 

  11. Himiniuc LM, Toma BF, Popovici R, Grigore AM, Hamod A, Volovat C, et al. Update on the use of nanocarriers and drug delivery systems and future directions in cervical cancer. J Immunol Res. 2022;2022.

  12. Wang X, Liu S, Guan Y, Ding J, Ma C, Xie Z. Vaginal drug delivery approaches for localized management of cervical cancer. Adv Drug Deliv Rev. 2021;174:114–26.

    CAS  PubMed  Google Scholar 

  13. Major I, McConville C. Vaginal drug delivery for the localised treatment of cervical cancer. Drug Deliv Transl Res. 2017;7(6):817–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Shang Q, Dong Y, Su Y, Leslie F, Sun M, Wang F. Local scaffold-assisted delivery of immunotherapeutic agents for improved cancer immunotherapy. Adv Drug Deliv Rev. 2022;185: 114308.

    CAS  PubMed  Google Scholar 

  15. Osmałek T, Froelich A, Jadach B, Tatarek A, Gadzinski P, Falana A, et al. Recent advances in polymer-based vaginal drug delivery systems. Pharmaceutics. 2021;13(6):1–49.

    Google Scholar 

  16. das Neves J, Nunes R, Machado A, Sarmento B. Polymer-based nanocarriers for vaginal drug delivery. Adv Drug Deliv Rev. 2015;92:53–70.

  17. Hussain A, Ahsan F. The vagina as a route for systemic drug delivery. J Controlled Release. 2005;103(2):301–13.

    CAS  Google Scholar 

  18. Deepak A, Goyal AK, Rath G. Nanofiber in transmucosal drug delivery. J Drug Deliv Sci Technol. 2018;43:379–87.

    CAS  Google Scholar 

  19. Vermani K, Garg S. The scope and potential of vaginal drug delivery. Pharm Sci Technol Today. 2000;3(10):359–64.

    CAS  PubMed  Google Scholar 

  20. McConville C. The therapeutic potential of vaginal drug delivery in the treatment of cervical cancer. Ther Deliv. 2015;6(5):559–70.

    CAS  PubMed  Google Scholar 

  21. Wang X, Wang L, Zong S, Qiu R, Liu S. Use of multifunctional composite nanofibers for photothermalchemotherapy to treat cervical cancer in mice. Biomater Sci. 2019;7(9):3846–54.

    PubMed  Google Scholar 

  22. Sharma A, Jyoti K, Bansal V, Jain UK, Bhushan B, Madan J. Soluble telmisartan bearing poly (ethylene glycol) conjugated chitosan nanoparticles augmented drug delivery, cytotoxicity, apoptosis and cellular uptake in human cervical cancer cells. Mater Sci Eng C. 2017;72:69–76.

    CAS  Google Scholar 

  23. Zhang S, Zhang Y, Wang Z, Guo T, Hou X, He Z, et al. Temperature-sensitive gel-loaded composite nanomedicines for the treatment of cervical cancer by vaginal delivery. Int J Pharm. 2020;586:119616.

  24. Charron† PN, Tahir† I, McConnell S, Sedler D, Floreani RA. Physico-mechanical and ex vivo analysis of aloe-alginate hydrogels for cervical cancer treatment. J Bioact Compat Polym. 2023;38(2):158–77.

  25. Saesoo S, Bunthot S, Sajomsang W, Gonil P, Phunpee S, Songkhum P, et al. Phospholipid-chitosan hybrid nanoliposomes promoting cell entry for drug delivery against cervical cancer. J Colloid Interface Sci. 2016;480:240–8.

    CAS  PubMed  Google Scholar 

  26. Cazorla-Luna R, Ruiz-Caro R, Veiga MD, Malcolm RK, Lamprou DA. Recent advances in electrospun nanofiber vaginal formulations for women’s sexual and reproductive health. Int J Pharm. 2021;607(September):1–48.

    Google Scholar 

  27. Ensign LM, Cone R, Hanes J. Nanoparticle-based drug delivery to the vagina: a review. J Controlled Release. 2014;190:500–14.

    CAS  Google Scholar 

  28. Caramella CM, Rossi S, Ferrari F, Bonferoni MC, Sandri G. Mucoadhesive and thermogelling systems for vaginal drug delivery. Adv Drug Deliv Rev. 2015;92(September):39–52.

    CAS  PubMed  Google Scholar 

  29. Johal HS, Garg T, Rath G, Goyal AK. Advanced topical drug delivery system for the management of vaginal candidiasis. Drug Deliv. 2016;23(2):550–63.

    CAS  PubMed  Google Scholar 

  30. dos Santos AM, Carvalho SG, Araujo VHS, Carvalho GC, Gremião MPD, Chorilli M. Recent advances in hydrogels as strategy for drug delivery intended to vaginal infections. Int J Pharm. 2020;590(November):1–33.

    Google Scholar 

  31. Aka-Any-Grah A, Bouchemal K, Koffi A, Agnely F, Zhang M, Djabourov M, et al. Formulation of mucoadhesive vaginal hydrogels insensitive to dilution with vaginal fluids. Eur J Pharm Biopharm. 2010;76(2):296–303.

    CAS  PubMed  Google Scholar 

  32. Abidin IZ, Murphy EJ, Fehrenbach GW, Rezoagli E, Gately N, Major I. A systematic review of mucoadhesive vaginal tablet testing. Drug Target Insights. 2023;17:5–30.

    PubMed  PubMed Central  Google Scholar 

  33. Perioli L, Ambrogi V, Venezia L, Pagano C, Ricci M, Rossi C. Chitosan and a modified chitosan as agents to improve performances of mucoadhesive vaginal gels. Colloids Surf B Biointerfaces. 2008;66(1):141–5.

    CAS  PubMed  Google Scholar 

  34. Wang X, Wang J, Wu W, Li H. Vaginal delivery of carboplatin-loaded thermosensitive hydrogel to prevent local cervical cancer recurrence in mice. Drug Deliv. 2016;23(9):3544–51.

    CAS  PubMed  Google Scholar 

  35. Valenta C. The use of mucoadhesive polymers in vaginal delivery. Adv Drug Deliv Rev. 2005;57(11):1692–712.

    CAS  PubMed  Google Scholar 

  36. Andrews GP, Laverty TP, Jones DS. Mucoadhesive polymeric platforms for controlled drug delivery. Eur J Pharm Biopharm. 2009;71(3):505–18.

    CAS  PubMed  Google Scholar 

  37. Xu J, Tam M, Samaei S, Lerouge S, Barralet J, Stevenson MM, et al. Mucoadhesive chitosan hydrogels as rectal drug delivery vessels to treat ulcerative colitis. Acta Biomater. 2017;48:247–57.

    CAS  PubMed  Google Scholar 

  38. Stie MB, Gätke JR, Wan F, Chronakis IS, Jacobsen J, Nielsen HM. Swelling of mucoadhesive electrospun chitosan/polyethylene oxide nanofibers facilitates adhesion to the sublingual mucosa. Carbohydr Polym. 2020;242: 116428.

    CAS  PubMed  Google Scholar 

  39. Koffi AA, Agnely F, Ponchel G, Grossiord JL. Modulation of the rheological and mucoadhesive properties of thermosensitive poloxamer-based hydrogels intended for the rectal administration of quinine. Eur J Pharm Sci. 2006;27(4):328–35.

    CAS  PubMed  Google Scholar 

  40. Mayol L, Quaglia F, Borzacchiello A, Ambrosio L, Rotonda M. A novel poloxamers/hyaluronic acid in situ forming hydrogel for drug delivery: rheological, mucoadhesive and in vitro release properties. Eur J Pharm Biopharm. 2008;70(1):199–206.

    CAS  PubMed  Google Scholar 

  41. Frank LA, Sandri G, D’Autilia F, Contri RV, Bonferoni MC, Caramella C, et al. Chitosan gel containing polymeric nanocapsules: a new formulation for vaginal drug delivery. Int J Nanomedicine. 2014;3151–61.

  42. Rossi S, Vigani B, Sandri G, Bonferoni MC, Caramella CM, Ferrari F. Recent advances in the mucus-interacting approach for vaginal drug delivery: from mucoadhesive to mucus-penetrating nanoparticles. Expert Opin Drug Deliv. 2019;16(8):777–81.

    CAS  PubMed  Google Scholar 

  43. Ci LQ, Huang ZG, Lv FM, Wang J, Feng LL, Sun F, et al. Enhanced delivery of imatinib into vaginal mucosa via a new positively charged nanocrystal-loaded in situ hydrogel formulation for treatment of cervical cancer. Pharmaceutics. 2019;11(1):15.

  44. Tavares Luiz M, Delello Di Filippo L, Carolina Alves R, Sousa Araújo VH, Lobato Duarte J, Maldonado Marchetti J, et al. The use of TPGS in drug delivery systems to overcome biological barriers. Eur Polym J. 2021;142:110129.

  45. Aggarwal U, Goyal AK, Rath G. Development and characterization of the cisplatin loaded nanofibers for the treatment of cervical cancer. Mater Sci Eng C. 2017;75:125–32.

    CAS  Google Scholar 

  46. Chen YP, Liu YW, Lee D, Qiu JT, Lee TY, Liu SJ. Biodegradable andrographolide-eluting nanofibrous membranes for the treatment of cervical cancer. Int J Nanomedicine. 2019;14:421–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen JC, Li LM, Gao JQ. Biomaterials for local drug delivery in central nervous system. Int J Pharm. 2019;560:92–100.

    CAS  PubMed  Google Scholar 

  48. Wani SUD, Gautam SP, Qadrie ZL, Gangadharappa HV. Silk fibroin as a natural polymeric based bio-material for tissue engineering and drug delivery systems-a review. Int J Biol Macromol. 2020;163:2145–61.

    CAS  PubMed  Google Scholar 

  49. Grimaudo MA, Concheiro A, Alvarez-Lorenzo C. Crosslinked hyaluronan electrospun nanofibers for ferulic acid ocular delivery. Pharmaceutics. 2020;12(3):274.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang S, Zhang Y, Wang H, Dong Z. Preparation, characterization and biocompatibility of electrospinning heparin-modified silk fibroin nanofibers. Int J Biol Macromol. 2011;48(2):345–53.

    CAS  PubMed  Google Scholar 

  51. Nasari M, Semnani D, Hadjianfar M, Amanpour S. Poly (ε-caprolactone)/poly (N-vinyl-2-pyrrolidone) core–shell nanofibers loaded by multi-walled carbon nanotubes and 5-fluorouracil: an anticancer drug delivery system. J Mater Sci. 2020;55(23):10185–201.

    CAS  Google Scholar 

  52. Victorelli FD, Calixto GMF, dos Santos KC, Buzzá HH, Chorilli M. Curcumin-loaded polyethyleneimine and chitosan polymer-based mucoadhesive liquid crystalline systems as a potential platform in the treatment of cervical Cancer. J Mol Liq. 2021;325:115080.

  53. Yang X, Da M, Zhang W, Qi Q, Zhang C, Han S. Role of Lactobacillus in cervical cancer. Cancer Manag Res. 2018;10:1219–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Teng P, Hao M. A population-based study of age-related associations between vaginal pH and the development of cervical intraepithelial neoplasia. Cancer Med. 2020;9(5):1890–902.

    PubMed  PubMed Central  Google Scholar 

  55. Tsakmaklis A, Vehreschild M, Farowski F, Trommer M, Kohler C, Herter J, et al. Changes in the cervical microbiota of cervical cancer patients after primary radio-chemotherapy. Int J Gynecol Cancer. 2020;30(9):1326–30.

    PubMed  PubMed Central  Google Scholar 

  56. Ansari A, Son D, Hur YM, Park S, You YA, Kim SM, et al. Lactobacillus probiotics improve vaginal dysbiosis in asymptomatic women. Nutrients. 2023;15(8):1862.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Pino A, Rapisarda AMC, Vitale SG, Cianci S, Caggia C, Randazzo CL, et al. A clinical pilot study on the effect of the probiotic Lacticaseibacillus rhamnosus TOM 22.8 strain in women with vaginal dysbiosis. Sci Rep. 2021;11(1):2592.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. De Araújo Pereira RR, Bruschi ML. Vaginal mucoadhesive drug delivery systems. Drug Dev Ind Pharm. 2012;38(6):643–52.

    PubMed  Google Scholar 

  59. Baxi K, Sawarkar S, Momin M, Patel V, Fernandes T. Vaginal siRNA delivery: overview on novel delivery approaches. Drug Deliv Transl Res. 2020;10(4):962–74.

    CAS  PubMed  Google Scholar 

  60. Valamla B, Thakor P, Phuse R, Dalvi M, Kharat P, Kumar A, et al. Engineering drug delivery systems to overcome the vaginal mucosal barrier: current understanding and research agenda of mucoadhesive formulations of vaginal delivery. J Drug Deliv Sci Technol. 2022;70(April):1–64.

    Google Scholar 

  61. Kovachev SM. Cervical cancer and vaginal microbiota changes. Arch Microbiol. 2020;202(2):323–7.

    CAS  PubMed  Google Scholar 

  62. Mohan S, Page LM, Higham JM. Diagnosis of abnormal uterine bleeding. Best Pract Res Clin Obstet Gynaecol. 2007;21(6):891–903.

    PubMed  Google Scholar 

  63. Aggarwal Urvashi, Goyal Amit K, Rath G. Development of drug targeting and delivery in cervical cancer. Curr Cancer Drug Targets. 2018;18(8):792–806.

    CAS  PubMed  Google Scholar 

  64. Büyükköroğlu G, Şenel B, Başaran E, Yenilmez E, Yazan Y. Preparation and in vitro evaluation of vaginal formulations including siRNA and paclitaxel-loaded SLNs for cervical cancer. Eur J Pharm Biopharm. 2016;109:174–83.

    PubMed  Google Scholar 

  65. Ordikhani F, Arslan ME, Marcelo R, Sahin I, Grigsby P, Schwarz JK, et al. Drug delivery approaches for the treatment of cervical cancer. Pharmaceutics. 2016;8(3):1–15.

    Google Scholar 

  66. Yang M, Yu T, Wang YY, Lai SK, Zeng Q, Miao B, et al. Vaginal delivery of paclitaxel via nanoparticles with non-mucoadhesive surfaces suppresses cervical tumor growth. Adv Healthc Mater. 2014;3(7):1044–52.

    CAS  PubMed  Google Scholar 

  67. Khodadadi M, Alijani S, Montazeri M, Esmaeilizadeh N, Sadeghi-Soureh S, Pilehvar-Soltanahmadi Y. Recent advances in electrospun nanofiber-mediated drug delivery strategies for localized cancer chemotherapy. J Biomed Mater Res - Part A. 2020;108(7):1444–58.

    CAS  Google Scholar 

  68. Sofi HS, Abdal-hay A, Ivanovski S, Zhang YS, Sheikh FA. Electrospun nanofibers for the delivery of active drugs through nasal, oral and vaginal mucosa: current status and future perspectives. Mater Sci Eng C. 2020;111(February): 110756.

    CAS  Google Scholar 

  69. Anup N, Chavan T, Chavan S, Polaka S, Kalyane D, Abed SN, et al. Reinforced electrospun nanofiber composites for drug delivery applications. J Biomed Mater Res - Part A. 2021;109(10):2036–64.

    CAS  Google Scholar 

  70. Pérez-González GL, Villarreal-Gómez LJ, Serrano-Medina A, Torres-Martínez EJ, Cornejo-Bravo JM. Mucoadhesive electrospun nanofibers for drug delivery systems: applications of polymers and the parameters’ roles. Int J Nanomedicine. 2019;14:5271–85.

    PubMed  PubMed Central  Google Scholar 

  71. Zhang Z, Wu Y, Kuang G, Liu S, Zhou D, Chen X, et al. Pt(iv) prodrug-backboned micelle and DCA loaded nanofibers for enhanced local cancer treatment. J Mater Chem B. 2017;5(11):2115–25.

    CAS  PubMed  Google Scholar 

  72. Ma Y, Wang X, Zong S, Zhang Z, Xie Z, Huang Y, et al. Local, combination chemotherapy in prevention of cervical cancer recurrence after surgery by using nanofibers co-loaded with cisplatin and curcumin. RSC Adv. 2015;5(129):106325–32.

    CAS  Google Scholar 

  73. Zhang Z, Liu S, Qi Y, Zhou D, Xie Z, Jing X, et al. Time-programmed DCA and oxaliplatin release by multilayered nanofiber mats in prevention of local cancer recurrence following surgery. J Controlled Release. 2016;235:125–33.

    CAS  Google Scholar 

  74. Yan E, Jiang J, Yang X, Fan L, Wang Y, An Q, et al. pH-sensitive core-shell electrospun nanofibers based on polyvinyl alcohol/polycaprolactone as a potential drug delivery system for the chemotherapy against cervical cancer. J Drug Deliv Sci Technol. 2020;55: 101455.

    CAS  Google Scholar 

  75. Chen J, Gu W, Yang L, Chen C, Shao R, Xu K, et al. Nanotechnology in the management of cervical cancer. Rev Med Virol. 2015;25(S1):72–83.

    CAS  PubMed  Google Scholar 

  76. Leyva-Gómez G, Piñón-Segundo E, Mendoza-Muñoz N, Zambrano-Zaragoza ML, Mendoza-Elvira S, Quintanar-Guerrero D. Approaches in polymeric nanoparticles for vaginal drug delivery: a review of the state of the art. Int J Mol Sci. 2018;19(6):1–19.

    Google Scholar 

  77. Unnati Garg ID , Swati Chauhan ID , Upendra Nagaich ID NJI. Current advances in chitosan nanoparticles based drug delivery and targeting. Adv Pharm Bull. 2019;9(2):195–204.

  78. Wong TW, Dhanawat M, Rathbone MJ. Vaginal drug delivery: strategies and concerns in polymeric nanoparticle development. Expert Opin Drug Deliv. 2014;11(9):1419–34.

    CAS  PubMed  Google Scholar 

  79. Sur S, Rathore A, Dave V, Reddy KR, Chouhan RS, Sadhu V. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Struct Nano-Objects. 2019;20: 100397.

    CAS  Google Scholar 

  80. Gómez-Guillén MC, Montero MP. Enhancement of oral bioavailability of natural compounds and probiotics by mucoadhesive tailored biopolymer-based nanoparticles: a review. Food Hydrocoll. 2021;118(December 2020).

  81. Whaley KJ, Hanes J, Shattock R, Cone RA, Friend DR. Novel approaches to vaginal delivery and safety of microbicides: biopharmaceuticals, nanoparticles, and vaccines. Antiviral Res. 2010;88(SUPPL):S55-66.

    CAS  PubMed  Google Scholar 

  82. Elhabak M, Ibrahim S, Ibrahim RR. Intra-vaginal gemcitabine-hybrid nanoparticles for effective cervical cancer treatment. OpenNano. 2022;8(December):1–28.

    Google Scholar 

  83. Lopes-Nunes J, Agonia AS, Rosado T, Gallardo E, Palmeira-de-Oliveira R, Palmeira-de-Oliveira A, et al. Aptamer-functionalized gold nanoparticles for drug delivery to gynecological carcinoma cells. Cancers. 2021;13(16):4038.

  84. Daduang J, Palasap A, Daduang S, Boonsiri P, Suwannalert P, Limpaiboon T. Gallic acid enhancement of gold nanoparticle anticancer activity in cervical cancer cells. Asian Pac J Cancer Prev. 2015;16(1):169–74.

    PubMed  Google Scholar 

  85. Cabral-Romero C, García-Cuellar CM, Hernandez-Delgadillo R, Sánchez-Pérez Y, Meester I, Solís-Soto JM, et al. Synergistic antitumor activity of gramicidin/lipophilic bismuth nanoparticles (BisBAL NPs) on human cervical tumor cells. Front Nanotechnol. 2021;3(April):1–10.

    Google Scholar 

  86. Mane PC, Sayyed SAR, Kadam DD, D.Shinde M, Fatehmulla A, Aldhafiri AM, et al. Terrestrial snail-mucus mediated green synthesis of silver nanoparticles and in vitro investigations on their antimicrobial and anticancer activities. Sci Rep. 2021;11(1):1–16.

  87. Lu C, Liu M, Fu H, Zhang W, Peng G, Zhang Y, et al. Novel thermosensitive in situ gel based on poloxamer for uterus delivery. Eur J Pharm Sci. 2015;77:24–8.

    CAS  PubMed  Google Scholar 

  88. Norouzi M, Nazari B, Miller DW. Injectable hydrogel-based drug delivery systems for local cancer therapy. Drug Discov Today. 2016;21(11):1835–49.

    CAS  PubMed  Google Scholar 

  89. Ruel-Gariépy E, Leroux JC. In situ-forming hydrogels - review of temperature-sensitive systems. Eur J Pharm Biopharm. 2004;58(2):409–26.

    PubMed  Google Scholar 

  90. Bashir R, Maqbool M, Ara I, Zehravi M. An in sight into novel drug delivery system. In Situ Gels Cellmed. 2021;11(5):1–7.

    Google Scholar 

  91. Baloglu E, Senyigit ZA, Karavana SY, Bernkop-Schnürch A. Strategies to prolong the intravaginal residence time of drug delivery systems. J Pharm Pharm Sci. 2009;12(3):312–36.

    CAS  PubMed  Google Scholar 

  92. Kolawole OM, Cook MT. In situ gelling drug delivery systems for topical drug delivery. Eur J Pharm Biopharm. 2023;184:36–49.

  93. Vigani B, Rossi S, Sandri G, Bonferoni MC, Caramella CM, Ferrari F. Recent advances in the development of in situ gelling drug delivery systems for non-parenteral administration routes. Pharmaceutics. 2020;12(9):1–29.

    Google Scholar 

  94. Jalalvandi E, Shavandi A. In situ-forming and pH-responsive hydrogel based on chitosan for vaginal delivery of therapeutic agents. J Mater Sci Mater Med. 2018;29(11):1–11.

    CAS  Google Scholar 

  95. Wei L, Chen J, Zhao S, Ding J, Chen X. Thermo-sensitive polypeptide hydrogel for locally sequential delivery of two-pronged antitumor drugs. Acta Biomater. 2017;58:44–53.

    CAS  PubMed  Google Scholar 

  96. Jie H, Liu L, Shuangying G, Xingqi W, Rongfeng H, Yong Z, et al. A novel phytantriol-based in situ liquid crystal gel for vaginal delivery. AAPS PharmSciTech. 2019;20:1.

  97. Tan B, Huang L, Wu Y, Liao J. Advances and trends of hydrogel therapy platform in localized tumor treatment: a review. J Biomed Mater Res - Part A. 2021;109(4):404–25.

    CAS  Google Scholar 

  98. Erfani A, Diaz AE, Doyle PS. Hydrogel-enabled, local administration and combinatorial delivery of immunotherapies for cancer treatment. Mater Today. 2023;65(xx):227–43.

  99. Cascone S, Lamberti G. Hydrogel-based commercial products for biomedical applications: a review. Int J Pharm. 2020;573(January):1–56.

    Google Scholar 

  100. Ciolacu DE, Nicu R, Ciolacu F. Cellulose-based hydrogels as sustained drug-delivery systems. Materials. 2020;13(22):1–37.

    Google Scholar 

  101. Taurin S, Almomen AA, Pollak T, Kim SJ, Maxwell J, Peterson CM, et al. Thermosensitive hydrogels a versatile concept adapted to vaginal drug delivery. J Drug Target. 2018;26(7):533–50.

    CAS  PubMed  Google Scholar 

  102. Antimisiaris SG, Mourtas S. Recent advances on anti-HIV vaginal delivery systems development. Adv Drug Deliv Rev. 2015;92:123–45.

    CAS  PubMed  Google Scholar 

  103. Gosecka M, Gosecki M. Antimicrobial polymer-based hydrogels for the intravaginal therapies—engineering considerations. Pharmaceutics. 2021;13(9):1393.

  104. das Neves J, Amiji M, Sarmento B. Mucoadhesive nanosystems for vaginal microbicide development: friend or foe? Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2011;3(4):389–99.

  105. Qian Q, Wang D, Shi L, Zhang Z, Qian J, Shen J, et al. A pure molecular drug hydrogel for post-surgical cancer treatment. Biomaterials. 2020;2021(265): 120403.

    Google Scholar 

  106. Hafiz MA, Ghauri MA, Abbas N, Hussain T, Bukhari NI. Journal of Drug Delivery Science and Technology Development of cervix-targeted hydrogel carrier for carboplatin-loaded nanosponges : in-vitro and ex-vivo evaluation. 2023;84(June):1–7.

  107. Jamal A, Shahzadi L, Ahtzaz S, Zahid S, Chaudhry AA, Rehman I ur, et al. Identification of anti-cancer potential of doxazocin: loading into chitosan based biodegradable hydrogels for on-site delivery to treat cervical cancer. Mater Sci Eng C. 2018;82(May 2017):102–9.

  108. Qian Q, Shi L, Gao X, Ma Y, Yang J, Zhang Z, et al. A paclitaxel-based mucoadhesive nanogel with multivalent interactions for cervical cancer therapy. Small. 2019;15(47):1–11.

    Google Scholar 

  109. Antimisiaris SG, Marazioti A, Kannavou M, Natsaridis E, Gkartziou F, Kogkos G, et al. Overcoming barriers by local drug delivery with liposomes. Adv Drug Deliv Rev. 2021;174:53–86.

    CAS  PubMed  Google Scholar 

  110. He H, Lu Y, Qi J, Zhu Q, Chen Z, Wu W. Adapting liposomes for oral drug delivery. Acta Pharm Sin B. 2019;9(1):36–48.

    PubMed  Google Scholar 

  111. Netsomboon K, Bernkop-Schnürch A. Mucoadhesive vs. mucopenetrating particulate drug delivery. Eur J Pharm Biopharm. 2016;98:76–89.

    CAS  PubMed  Google Scholar 

  112. De Leo V, Milano F, Agostiano A, Catucci L. Recent advancements in polymer/liposome assembly for drug delivery: from surface modifications to hybrid vesicles. Polymers. 2021;13(7):1027.

  113. Rohani Shirvan A, Bashari A, Hemmatinejad N. New insight into the fabrication of smart mucoadhesive buccal patches as a novel controlled-drug delivery system. Eur Polym J. 2019;119(July):541–50.

    CAS  Google Scholar 

  114. Takeuchi H, Thongborisute J, Matsui Y, Sugihara H, Yamamoto H, Kawashima Y. Novel mucoadhesion tests for polymers and polymer-coated particles to design optimal mucoadhesive drug delivery systems. Adv Drug Deliv Rev. 2005;57(11):1583–94.

    CAS  PubMed  Google Scholar 

  115. Dou YN, Zheng J, Foltz WD, Weersink R, Chaudary N, Jaffray DA, et al. Heat-activated thermosensitive liposomal cisplatin (HTLC) results in effective growth delay of cervical carcinoma in mice. J Controlled Release. 2014;178(1):69–78.

    CAS  Google Scholar 

  116. Dou YN, Chaudary N, Chang MC, Dunne M, Huang H, Jaffray DA, et al. Tumor microenvironment determines response to a heat-activated thermosensitive liposome formulation of cisplatin in cervical carcinoma. J Controlled Release. 2017;262(May):182–91.

    CAS  Google Scholar 

  117. Lechanteur A, Furst T, Evrard B, Delvenne P, Piel G, Hubert P. Promoting vaginal distribution of E7 and MCL-1 siRNA-silencing nanoparticles for cervical cancer treatment. Mol Pharm. 2017;14(5):1706–17.

    CAS  PubMed  Google Scholar 

  118. Huo W, Ding Y, Sheng C, Pi Y, Guo Y, Wu A, et al. Application of 3D printing in cervical cancer brachytherapy. J Radiat Res Appl Sci. 2022;15(2):18–24.

    CAS  Google Scholar 

  119. Kiseleva M, Omar MM, Boisselier É, Selivanova SV, Fortin MA. A three-dimensional printable hydrogel formulation for the local delivery of therapeutic nanoparticles to cervical cancer. ACS Biomater Sci Eng. 2022;8(3):1200–14.

    CAS  PubMed  Google Scholar 

  120. Baek M, Kim D, Kim N, Rhim CC, Kim J, Nam J. Incorporating a 3-dimensional printer into the management of early-stage cervical cancer. J Surg Oncol. 2016;114(2):150–2.

    PubMed  Google Scholar 

  121. Almotairy A, Alyahya M, Althobaiti A, Almutairi M, Bandari S, Ashour EA, et al. Disulfiram 3D printed film produced via hot-melt extrusion techniques as a potential anticervical cancer candidate. Int J Pharm. 2023;635: 122709.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhao C, Wang Z, Hua C, Ji J, Zhou Z, Fang Y, et al. Design, modeling and 3D printing of a personalized cervix tissue implant with protein release function. Biomed Mater. 2020;15(4): 045005.

    CAS  PubMed  Google Scholar 

  123. Chen J, Qin X, Zhong S, Chen S, Su W, Liu Y. Characterization of curcumin/cyclodextrin polymer inclusion complex and investigation on its antioxidant and antiproliferative activities. Molecules. 2018;23(5):1179.

    PubMed  PubMed Central  Google Scholar 

  124. Han W, Lv Y, Sun Y, Wang Y, Zhao Z, Shi C, et al. The anti-inflammatory activity of specific-sized hyaluronic acid oligosaccharides. Carbohydr Polym. 2022;276: 118699.

    CAS  PubMed  Google Scholar 

  125. Xing M, Cao Q, Wang Y, Xiao H, Zhao J, Zhang Q, et al. Advances in research on the bioactivity of alginate oligosaccharides. Mar Drugs. 2020;18(3):144.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Zarrintaj P, Ramsey JD, Samadi A, Atoufi Z, Yazdi MK, Ganjali MR, et al. Poloxamer: a versatile tri-block copolymer for biomedical applications. Acta Biomater. 2020;110:37–67.

    CAS  PubMed  Google Scholar 

  127. Bonferoni MC, Sandri G, Rossi S, Ferrari F, Caramella C. Chitosan and its salts for mucosal and transmucosal delivery. Expert Opin Drug Deliv. 2009;6(9):923–39.

    CAS  PubMed  Google Scholar 

  128. Chopra S, Mahdi S, Kaur J, Iqbal Z, Talegaonkar S, Ahmad FJ. Advances and potential applications of chitosan derivatives as mucoadhesive biomaterials in modern drug delivery. J Pharm Pharmacol. 2010;58(8):1021–32.

    Google Scholar 

  129. Dobaria N, Mashru R, Vadia NH. Vaginal drug delivery systems: a review of current status. East Cent Afr J Pharm Sci. 2008;10(1):3–13.

    Google Scholar 

  130. Srikrishna S, Cardozo L. The vagina as a route for drug delivery: a review. Int Urogynecol J Pelvic Floor Dysfunct. 2013;24(4):537–43.

    Google Scholar 

  131. Motevaseli E, Shirzad M, Akrami SM, Mousavi AS, Mirsalehian A, Modarressi MH. Normal and tumour cervical cells respond differently to vaginal lactobacilli, independent of pH and lactate. J Med Microbiol. 2013;62(7):1065–72.

    PubMed  Google Scholar 

  132. Wang KD, Xu DJ, Wang BY, Yan DH, Lv Z, Su JR. Inhibitory effect of vaginal Lactobacillus supernatants on cervical cancer cells. Probiotics Antimicrob Proteins. 2018;10(2):236–42.

    PubMed  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to the management of Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, India, and Department of Biotechnology (DBT), Government of India, under the DBT Builder project with order no. BT/INF/22/SP45078/2022.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Ivy Saha, Jitu Halder, Tushar Kanti Rajwar, Ritu Mahanty, Deepak Pradhan, Priyanka Dash, Chandan Das, Vineet Kumar Rai, Biswakanth Kar, Goutam Ghosh, and Goutam Rath. The first draft of the manuscript was written by Ivy Saha, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Goutam Rath.

Ethics declarations

Ethics Approval and Consent to Participate

N/A.

Consent for Publication

N/A.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Studies proving that localized drug delivery provides safety toward vital organs are discussed.

• Novel drug delivery approaches for local treatment of cervical cancer are broadly discussed.

• Nanocarriers modified by researchers for enhanced therapeutic effects are discussed.

• Various combination treatment modalities for local delivery are highlighted.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, I., Halder, J., Rajwar, T.K. et al. Novel Drug Delivery Approaches for the Localized Treatment of Cervical Cancer. AAPS PharmSciTech 25, 85 (2024). https://doi.org/10.1208/s12249-024-02801-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-024-02801-1

Keywords

Navigation