Skip to main content
Log in

Natural Polymer-Based Nanogel for pH-Responsive Delivery of Sorafenib Tosylate in Hemangiosarcoma

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Smart nanomedicinal treatment for cancer manifests a solubility challenge with inherent nanoscale size and nonspecific release with stimuli-responsive potential. This is the limelight in novel chemotherapy to pursue physiochemical differences between the tumor microenvironment (TME) and normal cells, which introduces active groups of nanocarriers responding to various stimuli, endowing them with concise responses to various tumor-related signals. The nanogels were successfully prepared by a modified solvent evaporation technique. Nine batches were formulated by changing the chitosan concentration (12, 14, 16 mg/ml) and sonication time (5, 10, 15 min). The formulations were optimized for particle size and zeta potential with high percent entrapment efficiency (%EE) through Central Composite Design software. The optimized batch F7 had a 182-nm size and high zeta potential (64.5 mV) with 98% EE. The drug release of F7 was higher at pH 6 (97.556%) than at pH 7.4 (45.113%). The pharmacokinetic study shows that the release follows the Hixon plot model (R2 = 0.9334) that shifts to zero order (R2 = 0.9149). The nanogel F7 was observed for stability and showed an absence of color change, phase separation, and opacity for 6 months. In the present study, the pH difference between cancer cells and normal cells is the key point of the smart nanogel. This study is promising but challenging depending on the in vivo study. The nanogel was successfully prepared and evaluated for pH-responsive release. As hemangiosarcoma commonly occurs in dogs, this formulation helps to limit the difficulties with administration.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets used for the current study were collected from the journals, by using Google Scholar, PubMed, Springer, Science Direct links, etc.

References

  1. Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene. 2007;26(22):3291–310.

    Article  CAS  PubMed  Google Scholar 

  2. Lin CY, Zhang YM, Li BZ, Shu MA, Xu WB. Identification and characterization of mitogen-activated protein kinase kinase 4 (MKK4) from the mud crab Scylla paramamosain in response to Vibrio alginolyticus and White Spot Syndrome Virus (WSSV). Dev Comp Immunol. 2023;7:104755.

    Article  Google Scholar 

  3. Downward J. Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer. 2003;3(1):11–22.

    Article  CAS  PubMed  Google Scholar 

  4. Raut H, Jadhav C, Shetty K, Laxane N, Nijhawan HP, Rao GK, Alavala RR, Joshi G, Patro CN, Soni G, Yadav KS. Sorafenib tosylate novel drug delivery systems: Implications of nanotechnology in both approved and unapproved indications. OpenNano. 2022;1(8): 100103.

    Article  Google Scholar 

  5. Wilhelm SM, Adnane L, Newell P, Villanueva A, Llovet JM, Lynch M. Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther. 2008;7(10):3129–40.

    Article  CAS  PubMed  Google Scholar 

  6. Dahiya M, Awasthi R, Yadav JP, Sharma S, Dua K, Dureja H. Chitosan based sorafenib tosylate loaded magnetic nanoparticles: Formulation and in-vitro characterization. Int J Biol Macromol. 2023;1(242):124919.

    Article  Google Scholar 

  7. Razmimanesh F, Sodeifian G. Evaluation of a temperature-responsive magnetotocosome as a magnetic targeting drug delivery system for sorafenib tosylate anticancer drug. Heliyon. 2023;9(11):e21794.

  8. Bhattacharya S, Pawde D, Dumpala RL. Preparation of Sorafenib tosylate self-emulsified drug delivery system and the effect on combination therapy with Bosutinib against HCT116/SW1417 cells. Results Chem. 2022;1(4):100385.

    Article  Google Scholar 

  9. Khan MA, Raza A, Ovais M, Sohail MF, Ali S. Current state and prospects of nano-delivery systems for sorafenib. Int J Polym Mater Polym Biomater. 2018;67(18):1105–15.

    Article  CAS  Google Scholar 

  10. Hajebi S, Rabiee N, Bagherzadeh M, Ahmadi S, Rabiee M, Roghani-Mamaqani H, Tahriri M, Tayebi L, Hamblin MR. Stimulus-responsive polymeric nanogels as smart drug delivery systems. Acta Biomater. 2019;1(92):1–8.

    Article  Google Scholar 

  11. Qureshi MA, Khatoon F. Different types of smart nanogel for targeted delivery. J Sci Adv Mater Devices. 2019;4(2):201–12.

    Article  Google Scholar 

  12. Ahmadi M, Madrakian T, Afkhami A. Smart nanogels in cancer therapy. InSmart Nanocontainers, Elsevier; 2020. p. 179–93.

  13. Salehi R, Rasouli S, Hamishehkar H. Smart thermo/pH responsive magnetic nanogels for the simultaneous delivery of doxorubicin and methotrexate. Int J Pharm. 2015;487(1–2):274–84.

    Article  CAS  PubMed  Google Scholar 

  14. Verma NK, Purohit MP, Equbal D, Dhiman N, Singh A, Kar AK, Shankar J, Tehlan S, Patnaik S. Targeted smart pH and thermoresponsive N, O-carboxymethyl chitosan conjugated nanogels for enhanced therapeutic efficacy of doxorubicin in MCF-7 breast cancer cells. Bioconjug Chem. 2016;27(11):2605–19.

    Article  CAS  PubMed  Google Scholar 

  15. Ma B, Li Q, Mi Y, Zhang J, Tan W, Guo Z. pH-responsive nanogels with enhanced antioxidant and antitumor activities on drug delivery and smart drug release. Int J Biol Macromol. 2023;4:128590.

    Google Scholar 

  16. Cuggino JC, Molina M, Wedepohl S, Igarzabal CI, Calderón M, Gugliotta LM. Responsive nanogels for application as smart carriers in endocytic pH-triggered drug delivery systems. Eur Polymer J. 2016;1(78):14–24.

    Article  Google Scholar 

  17. Wei P, Gangapurwala G, Pretzel D, Leiske MN, Wang L, Hoeppener S, Schubert S, Brendel JC, Schubert US. Smart pH-sensitive nanogels for controlled release in an acidic environment. Biomacromol. 2018;20(1):130–40.

    Article  Google Scholar 

  18. Naranjo AG, Cobas HV, Gupta NK, López KR, Peña AA, Sacasas D, Brito RÁ. 5-Fluorouracil uptake and release from pH-responsive nanogels: An experimental and computational study. J Mol Liq. 2022;15(362):119716.

    Article  Google Scholar 

  19. Marconato L, Sabattini S, Marisi G, Rossi F, Leone VF, Casadei-Gardini A. Sorafenib for the treatment of unresectable hepatocellular carcinoma: Preliminary toxicity and activity data in dogs. Cancers. 2020;12(5):1272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Motegi T, Katayama M, Uzuka Y, Okamura Y. Evaluation of anticancer effects and enhanced doxorubicin cytotoxicity of xanthine derivatives using canine hemangiosarcoma cell lines. Res Vet Sci. 2013;95(2):600–5.

    Article  CAS  PubMed  Google Scholar 

  21. Rocha MS, Lucci CM, Dos Santos JA, Longo JP, Muehlmann LA, Azevedo RB. Photodynamic therapy for cutaneous hemangiosarcoma in dogs. Photodiagn Photodyn Ther. 2019;1(27):39–43.

    Article  Google Scholar 

  22. Carnio A, Eleni C, Cocumelli C, Del Pino LE, Simeoni S, Spallucci V, Scaramozzino P. Evaluation of intrinsic and extrinsic risk factors for dog visceral hemangiosarcoma: A retrospective case-control study register-based in Lazio region, Italy. Prev Vet Med. 2020;1(181):105074.

    Article  Google Scholar 

  23. Mohammadi M, Arabi L, Alibolandi M. Doxorubicin-loaded composite nanogels for cancer treatment. J Control Release. 2020;10(328):171–91.

    Article  Google Scholar 

  24. Mo R, Gu Z. Tumor microenvironment and intracellular signal-activated nanomaterials for anticancer drug delivery. Mater Today. 2016;19(5):274–83.

    Article  CAS  Google Scholar 

  25. Yallapu MM, Jaggi M, Chauhan SC. Design and engineering of nanogels for cancer treatment. Drug Discovery Today. 2011;16(9–10):457–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zha L, Banik B, Alexis F. Stimulus responsive nanogels for drug delivery. Soft Matter. 2011;7(13):5908–16.

    Article  CAS  Google Scholar 

  27. He Q, Chen J, Yan J, Cai S, Xiong H, Liu Y, Peng D, Mo M, Liu Z. Tumor microenvironment responsive drug delivery systems. Asian J Pharm Sci. 2020;15(4):416–48.

    Article  PubMed  Google Scholar 

  28. Kayra N, Aytekin AÖ. Chitosan nanogel for drug delivery and regenerative medicine. In: Polysaccharide Hydrogels for Drug Delivery and Regenerative Medicine. Elsevier; 2024. p. 215–32.

  29. Zhang H, Mardyani S, Chan WC, Kumacheva E. Design of biocompatible chitosan microgels for targeted pH-mediated intracellular release of cancer therapeutics. Biomacromol. 2006;7(5):1568–72.

    Article  CAS  Google Scholar 

  30. Ullah K, Ikram M, Mehmood S, Hassham M, Asad B, Hassham M, Ullah H, Sohail M, Shujaat A, Khan S. Natural cationic polymers: Origin, properties and therapeutic applications Journal Of Contemporary Pharmacy. J Contemp Pharm. 2017;1:58–70.

    Article  Google Scholar 

  31. McGrath JE, Hickner MA, Höfer R. Polymers for a sustainable environment and green energy. In: Comprehensive Polymer Science. Vol. 10. 2012; Elsevier. https://doi.org/10.1016/B978-0-444-53349-4.00301-0.

  32. Zheng Y, Kng J, Yang C, Hedrick JL, Yang YY. Cationic polymer synergizing with chemotherapeutics and re-purposing antibiotics against cancer cells. Biomater Sci. 2021;9(6):2174–82.

    Article  CAS  PubMed  Google Scholar 

  33. Dickerson EB, Marley K, Edris W, Tyner JW, Schalk V, MacDonald V, Loriaux M, Druker BJ, Helfand SC. Imatinib and dasatinib inhibit hemangiosarcoma and implicate PDGFR-β and Src in tumor growth. Transl Oncol. 2013;6(2):158-IN7.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Matousek JL, Campbell KL, Kakoma I, Solter PF, Schaeffer DJ. Evaluation of the effect of pH on in vitro growth of Malassezia pachydermatis. Can J Vet Res. 2003;67(1):56.

    PubMed  PubMed Central  Google Scholar 

  35. Küchler S, Radowski MR, Blaschke T, Dathe M, Plendl J, Haag R, Schäfer-Korting M, Kramer KD. Nanoparticles for skin penetration enhancement–a comparison of a dendritic core-multishell-nanotransporter and solid lipid nanoparticles. Eur J Pharm Biopharm. 2009;71(2):243–50.

    Article  PubMed  Google Scholar 

  36. Farshbaf M, Davaran S, Zarebkohan A, Annabi N, Akbarzadeh A, Salehi R. Significant role of cationic polymers in drug delivery systems. Artif Cells Nanomed Biotechnol. 2018;46(8):1872–91.

    CAS  PubMed  Google Scholar 

  37. Ravisankar P, Babu PS, Taslim SM, Kamakshi K, Manasa RL. Development and validation of UV-spectrophotometric method for determination of sorafenib in pharmaceutical dosage form and its degradation behavior under various stress conditions. Int J Pharm Sci. 2019;56:12–7.

    CAS  Google Scholar 

  38. Elmataeeshy ME, Sokar MS, Bahey-El-Din M, Shaker DS. Enhanced transdermal permeability of Terbinafine through novel nanoemulgel formulation; Development, in vitro and in vivo characterization. Futur J Pharm Sci. 2018;4(1):18–28.

    Google Scholar 

  39. Phillips MA, Gran ML, Peppas NA. Targeted nano delivery of drugs and diagnostics. Nano Today. 2010;5(2):143–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Talele S, Nikam P, Ghosh B, Deore C, Jaybhave A, Jadhav A. A research article on nanogel as topical promising drug delivery for diclofenac sodium. Indian J Pharm Educ Res. 2017;51(4S):S580-587.

    Article  CAS  Google Scholar 

  41. Singh A, Vaishagya K, Verma RK, Shukla R. Temperature/pH-triggered PNIPAM-based smart nanogel system loaded with anastrozole delivery for application in cancer chemotherapy. AAPS PharmSciTech. 2019;20(5):213.

    Article  PubMed  Google Scholar 

  42. Ashwanikumar N, Kumar NA, Nair SA, Kumar GV. Methacrylic-based nanogels for the pH-sensitive delivery of 5-fluorouracil in the colon. Int J Nanomedicine. 2012;15:5769–79.

    Google Scholar 

  43. Sn M, Yogananda R, Nagaraja TS, Bharathi DR. Preparation and characterization of nanogel DDS containing clotrimazole an anti-fungal drug. Indo Am J Pharm Res. 2020;1013–22.

  44. Yadav SK, Mishra MK, Tiwari A, Shukla A. Emulgel: A new approach for enhanced topical drug delivery. Int J Curr Pharm. 2016;9(1):15–9.

    Article  Google Scholar 

  45. JeevanaJyothi B, Keerthi M. Studies on preformulation characteristics and production of polymeric nanoparticles of sorafenib tosylate. Int J Pharm Sci Rev Res. 2021;67((1)33):210–5.

    CAS  Google Scholar 

  46. Indian Pharmacopoeia Commission. Indian Pharmacopoeia. 2018;3242–45.

  47. Draize JH. The determination of the pH of the skin of man and common laboratory animals. J Investig Dermatol. 1942;5(2):77–85.

    Article  CAS  Google Scholar 

  48. Joseph E, Singhvi G. Multifunctional nanocrystals for cancer therapy: A potential nanocarrier. Nanomater Drug Deliv Ther. 2019;1:91–116.

    Article  Google Scholar 

  49. Mishra N, Wani TU, Rashid M, Kumar M, Chaudhary S, Kumar P. Targeting aspects of nanogels: An overview. Int J Pharm Sci Nanotechnol (IJPSN). 2014;7(4):2612–30.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank and acknowledge Dr. K.B. Burade, Principal of the Government College of Pharmacy for help and guidance throughout the research.

Author information

Authors and Affiliations

Authors

Contributions

Ms. Kiran Mali performed the research under Mr. Yogeshkumar Gavhane and Dr. Rita Chakole guidance. Mr. Yogeshkumar Gavhane analyzed data related to formulation evaluation. Dr. Rita Chakole analyzed and interpreted data related to the chemical investigation of the drug and formulation.

Corresponding author

Correspondence to Kiran K. Mali.

Ethics declarations

Ethics Approval and Consent to Participate

This article does not contain any studies involving human or animal subjects.

Consent for Publication

This article does not contain any consent for publication.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mali, K.K., Gavhane, Y.N. & Chakole, R.D. Natural Polymer-Based Nanogel for pH-Responsive Delivery of Sorafenib Tosylate in Hemangiosarcoma. AAPS PharmSciTech 25, 83 (2024). https://doi.org/10.1208/s12249-024-02797-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-024-02797-8

Keywords

Navigation