Skip to main content

Advertisement

Log in

Film-Forming, Moisturizing, and Sensory Properties of a Cosmetic Formulation Containing Tara Gum and Brazilian Berry Extracts

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The development of cosmetic formulations with moisturizing and film-forming properties has been very important to help keep skin physiology and protection. In this context, this study aimed to develop a cosmetic formulation containing Tara gum and Brazilian berry extract and evaluate its physical–mechanical, film-forming, and sensory properties. A gel formulation was developed based on Tara gum added to Plinia cauliflora extract and was characterized by its spreadability profile and sensory properties. A clinical study was carried out with ten participants to evaluate the skin microrelief, stratum corneum water content, transepidermal water loss (TEWL), and skin morphological characteristics by reflectance confocal microscopy (RCM) before and after 2 h of application of the formulations. The formulation with Brazilian berry significantly decreased the work of shear parameter, which can be correlated with improved spreadability in the sensory analysis. The clinical study showed that both formulations improved skin hydration and reduced the TEWL. The RCM imaging analysis showed the visible film on the skin surface, a decrease in the size of furrows, an increase in the reflectance of the interkeratinocytes, and reflectance of the stratum corneum for both formulations. These results were more pronounced for the formulation containing Brazilian berry. The Tara gum in the gel formulation promoted the formation and visualization of a polymeric net on the stratum corneum surface, demonstrated by the images obtained from RCM. However, the formulation added with the Brazilian berry extract improved the skin microrelief, honeycomb pattern of the epidermis, and skin hydration in deeper layers of the epidermis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Passeron T. The skin exposome. An exciting growing field of research. J Eur Acad Dermatol Venereol. 2020;34:3–3. https://doi.org/10.1111/jdv.16615.

    Article  PubMed  Google Scholar 

  2. Passeron, T. Krutmann J, Andersen ML, Katta R, Zouboulis CC. Clinical and biological impact of the exposome on the skin. J Eur Acad Dermatol Venereol 2020;34 Suppl 4:4–25. https://doi.org/10.1111/jdv.16614.

  3. Sore G, Lynch S. Skin Exposome. In Cosmetic dermatology, ZD Draelos (Ed.). (2022). https://doi.org/10.1002/9781119676881.ch7.

  4. Maia Campos PMBG, Costa GMD, Souza CRF. Plant-based cosmetic products. In: Phytotechnology: a sustainable platform for the development of herbal products. CRF Press, Boca Raton: Taylor and Francis, 2022. pp. 233–254.

  5. Michalak M. Plant-derived antioxidants: significance in skin health and the ageing process. Int J Mol Sci. 2022;23:585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ribeiro AS, Estanqueiro M, Oliveira MB, Lobo JMS. Main benefits and applicability of plant extracts in skin care products: a review. Cosmetics. 2015;2:48–65.

    Article  CAS  Google Scholar 

  7. Calixto LS, Maia Campos PMBG. Physical mechanical characterization of cosmetic formulations and correlation between instrumental measurements and sensorial properties. Int J Cosmet Sci. 2017;39(5):527–34.

    Article  CAS  PubMed  Google Scholar 

  8. Costa GMD, Alves GAD, Maia Campos PMBG. Application of design of experiments in the development of cosmetic formulation based on natural ingredients. Int J Phytocosmet Nat Ingred. 2019;6:4. https://doi.org/10.15171/ijpni.2019.04.

    Article  Google Scholar 

  9. Meira NAN, Pereira NP, Maciel LF, Menezes-Filho JA, Oliveira SSP. Development and stability testing of emulsions with Myrciaria cauliflora (Jaboticaba) peel extracts for cosmetic application. J Cosmetol. 2018;2(1): 000106.

    Google Scholar 

  10. Meira NAN, Pereira NP, Maciel LF, Oliveira DD, Nascimento IS, Silva RA. Flavonoids and anthocyanins in Myrciaria cauliflora (jaboticaba) aiming to cosmetic applicability. Visão Acadêmica. 2016;17(3):50–65.

    Google Scholar 

  11. Inada KOP, Leite IB, Martins ABN, Fialho E, Tomás-Barberán FA, Perrone D, Monteiro M. Jaboticaba berry: a comprehensive review on its polyphenol composition, health effects, metabolism, and the development of food products. Food Res Int. 2021;147:1–39.

    Article  Google Scholar 

  12. Wu S, Long C, Kennelly E. Phytochemistry and health benefits of jaboticaba, an emerging fruit crop from Brazil. Food Res Int 2013;54. https://doi.org/10.1016/j.foodres.2013.06.021.

  13. Junior AG, Souza P, Reis Lívero FA. Plinia cauliflora (Mart.) Kausel: a comprehensive ethnopharmacological review of a genuinely Brazilian species. J Ethnopharmacol. 2019;245:112169.

    Article  Google Scholar 

  14. Albuquerque BR, Pereira C, Calhelha RC, Alves MJ, Abreu RMV, Barros L, Oliveira MBPP, Ferreira ICFR. Jabuticaba residues (Myrciaria jaboticaba (Vell.) Berg) are rich sources of valuable compounds with bioactive properties. Food Chem. 2020;309(30):125735.

    Article  CAS  PubMed  Google Scholar 

  15. Soares DSC, Florêncio MNS, Souza PM, Nunes TP, Oliveira Júnior AM. Research and development on jabuticaba (Myrciaria cauliflora): overview on academic research and patents. Food Sci Tech. 2019;39(4):1005–10.

    Article  Google Scholar 

  16. Garcia LGC, Silva FA, Asquieri ER, Vilas Boas EVB, Damiani C. Bioactive compounds and antioxidant activity of jabuticaba var. Pingo de mel during its physiological development. Food Sci Technol 2019;39(Suppl. 2): 556–562.

  17. Castangia I, Manca ML, Allaw M, Hellström J, Granato D, Manconi M. Jabuticaba (Myrciaria jaboticaba) peel as a sustainable source of anthocyanins and ellagitannins delivered by phospholipid vesicles for alleviating oxidative stress in human keratinocytes. Molecules. 2021;26:6697. https://doi.org/10.3390/molecules26216697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mitura S, Sionkowska A, Jaiswal A. Biopolymers for hydrogels in cosmetics: review. J Mater Sci Mater Med. 2020;31(6):50. https://doi.org/10.1007/s10856-020-06390-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Alves TFR, Morsink M, Batain F, Chaud MV, Almeida T, Fernandes DA, da Silva CF, Souto EB, Severino P. Applications of natural, semi-synthetic, and synthetic polymers in cosmetic formulations. Cosmetics. 2020;7(4):75. https://doi.org/10.3390/cosmetics7040075.

    Article  CAS  Google Scholar 

  20. Pünnel LC, Lunter DJ. Film-forming systems for dermal drug delivery. Pharmaceutics. 2021;13(7):932. https://doi.org/10.3390/pharmaceutics13070932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Oliveira FFD, Menezes L, Tavares MIB. Film-forming systems in topically administered pharmaceutical formulations. Mater Sci Appl. 2020;11:576–90.

    Google Scholar 

  22. Bornare SS, Aher SS, Saudagar RB. A review: film forming gel novel drug delivery system. Int J Curr Pharm Res. 2018;10:25–8. https://doi.org/10.22159/ijcpr.2018v10i2.25886.

    Article  CAS  Google Scholar 

  23. Liu F, Chang W, Chen M, Xu F, Ma J, Zhong F. Film-forming properties of guar gum, tara gum and locust bean gum. Food Hydrocolloids. 2020;98: 105007. https://doi.org/10.1016/j.foodhyd.2019.03.028.

    Article  CAS  Google Scholar 

  24. Deshmukh AS, Aminabhavi TM. Pharmaceutical applications of various natural gums. In: Ramawat, K., Mérillon, JM. (eds) Polysaccharides. Springer, Cham. 2014. https://doi.org/10.1007/978-3-319-03751-6_4-1.

  25. Rigano L, Deola M, Zaccariotto F, Colleoni T, Lionetti N. A new gelling agent and rheology modifier in cosmetics: Caesalpinia spinosa gum. Cosmetics. 2019;6(2):34.

    Article  CAS  Google Scholar 

  26. Desai S, Prajapati V, Chandarana C. Chemistry, biological activities, and uses of Tara gum. In: Gums, resins and latexes of plant origin: chemistry, biological activities and uses. Cham: Springer International Publishing; 2022. p. 265–89.

    Chapter  Google Scholar 

  27. Kakuda L, Campos PMBGM, Zanin RB, Favaro LN. Development of multifunctional sunscreens: evaluation of physico-mechanical and film-forming properties. Int J Pharm 2023;635:122705.

  28. Melo MO, Maia Campos PMBG. Application of biophysical and skin imaging techniques to evaluate the film-forming effect of cosmetic formulations. Int J Cosmet Sci. 2019;41:579–84.

    Article  PubMed  Google Scholar 

  29. Infante VHP, Leite MGA, Maia Campos PMBG. Film-forming properties of topical formulations for skin and hair: in vivo and in vitro studies using biophysical and imaging techniques. AAPS PharmSciTech. 2023;24(1):1–10.

    Google Scholar 

  30. Shahriari N, Grant-Kels JM, Rabinovitz H, Oliviero M, Scope A. Reflectance confocal microscopy: principles, basic terminology, clinical indications, limitations, and practical considerations. J Am Acad Dermatol. 2021;84:1–14. https://doi.org/10.1016/j.jaad.2020.05.153.

    Article  PubMed  Google Scholar 

  31. Ilie MA, Caruntu C, Lixandru D, Tampa M, Georgescu S-R, Constantin M-M, Constantin C, Neagu M, Zurac SA, Boda D. In vivo confocal laser scanning microscopy imaging of skin inflammation: clinical applications and research directions (Review). Exp Therap Med. 2019;17:1004–11. https://doi.org/10.3892/etm.2018.6981.

    Article  Google Scholar 

  32. Infante VH, Maia Campos PMBG. Application of a reflectance confocal microscopy imaging analysis score for the evaluation of non-melanogenic changes in male photoaged skin. Photochem Photobiol. 2023;99(3):993–1002. https://doi.org/10.1111/php.13713.

    Article  CAS  PubMed  Google Scholar 

  33. Maia Campos, PMBG, Melo, MO, Mercurio, DG. Assessment of skin hotoaging with reflectance confocal microscopy. In: Daily routine in cosmetic dermatology. 1ed.: Springer International Publishing, 2016, 1, pp. 1–10.

  34. Maia Campos PMBG, Melo MO, Camargo Junior FB. Effects of polysaccharide-based formulations on human skin. Polysaccharides; Ramawat, KG, Mérillon, J.-M., Eds. 2015. 1–8.

  35. Guida S, Ciardo S, Pellacani G, Longo C. Reflectance confocal microscopy of skin aging and skin cancer. Dermatol Pract Concept. 2021;11(3):e2021068. https://doi.org/10.5826/dpc.1103a68.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tai A, Bianchini R, Jachowicz J. Texture analysis of cosmetic/pharmaceutical raw materials and formulations. Int J Cosmet Sci. 2014;36(4):291–304.

    Article  CAS  PubMed  Google Scholar 

  37. Calixto LS, Infante VHP, Maia Campos PMBG. Design and characterization of topical formulations: correlations between instrumental and sensorial measurements. AAPS PharmSciTech. 2018;19(4):1512–9.

    Article  CAS  PubMed  Google Scholar 

  38. Shirata MMF, Maia Campos PMBG. Influence of UV filters on the texture profile and efficacy of a cosmetic formulation. Int J Cosmet Sci. 2017;39(6):622–8.

    Article  Google Scholar 

  39. Mercurio DG, Jdid R, Morizot F, Masson P, Maia Campos PMBG. Morphological, structural and biophysical properties of French and Brazilian photoaged skin. Br J Derm. 2016;61:174–553.

    Google Scholar 

  40. Shirata MMF, Alves GAD, Maia Campos PMBG. Photoaging-related skin changes in different age groups: a clinical evaluation by Biophysical and Imaging techniques. Int J Cosmetic Sci. 2019;41:1.

    Google Scholar 

  41. Bui HS. Coleman-Nally D. Film-forming technology and skin adhesion in long-wear cosmetics. Adhesion in Pharm, Biomedical and Dental Fields 2017:141–66.

  42. Calixto LS, Maia Campos PMBG, Picard C, Savary G. Brazilian and French sensory perception of complex cosmetic formulations: a cross-cultural study. Int J Cosmet Sci. 2020;42:60–7.

    Article  PubMed  Google Scholar 

  43. Kakuda L, Melo MOD, Maia Campos PMBG. Hydrolipidic characteristics and clinical efficacy of a dermocosmetic formulation for the improvement of homeostasis on oily mature skin. Life. 2022;13(1):87.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wu Y, Ding W, Jia L, He Q. The rheological properties of tara gum (Caesalpinia spinosa). Food Chem. 2015;168:366–71.

    Article  CAS  PubMed  Google Scholar 

  45. Choi JW, Kwon SH, Huh CH, Park KC, Youn SW. The influences of skin visco-elasticity, hydration level and aging on the formation of wrinkles: a comprehensive and objective approach. Skin Res Technol. 2013;19(1):e349–55.

    Article  PubMed  Google Scholar 

  46. Mawazi SM, Ann J, Othman N, Khan J, Alolayan SO, Al Thagfan SS, Kaleemullah M. A review of moisturizers; history, preparation, characterization and applications. Cosmetics. 2022;9:61.

    Article  CAS  Google Scholar 

  47. Purnamawati S, Indrastuti N, Danarti R, Saefudin T. The role of moisturizers in addressing various kinds of dermatitis: a review. Clin Med Res. 2017;15(3–4):75–87.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Krutmann J, Bouloc A, Sore G, Bernard BA, Passeron T. The skin aging exposome. J Dermatol Sci. 2017;85(3):152–61. https://doi.org/10.1016/j.jdermsci.2016.09.015.

    Article  PubMed  Google Scholar 

  49. Rosso JD, Zeichner J, Alexis A, Cohen D, Berson D. Understanding the epidermal barrier in healthy and compromised skin: clinically relevant information for the dermatology practitioner: Proceedings of an Expert Panel Roundtable Meeting. J Clin Aesthet Dermatol 2016;4(Suppl 1):S2-S8.

  50. Osseiran S, Cruz JD, Jeong S, Wang H, Fthenakis C, Evans CL. Characterizing stratum corneum structure, barrier function, and chemical content of human skin with coherent Raman scattering imaging. Biomed Opt Express. 2018;9(12):6425–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors thank the São Paulo Research Foundation—FAPESP (grant number: 2022/00897–0) and CNPq (grant number: 310111/2021–8).

Author information

Authors and Affiliations

Authors

Contributions

P.M.B.G.M.C.: conceptualization, project administration, manuscript review, and supervision; L.K.: conceptualization, data curation, methodology, formal analysis, and roles/writing—original draft; C.R.F.S.: conceptualization, data curation, methodology, formal analysis, and roles/writing—original draft.

Corresponding author

Correspondence to Patrícia M. B. G. Maia Campos.

Ethics declarations

Competing Interests

The authors declare no competing interests.

SISGEN

The activity of accessing the Genetic Heritage/CTA, under the terms below, was registered at SisGen (registration number AE821C2 for using Brazilian berry extract—Plinia cauliflora), following the provisions of Law 13.123/2015 and its regulations.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maia Campos, P.M.B.G., Kakuda, L. & Souza, C.R.F. Film-Forming, Moisturizing, and Sensory Properties of a Cosmetic Formulation Containing Tara Gum and Brazilian Berry Extracts. AAPS PharmSciTech 25, 71 (2024). https://doi.org/10.1208/s12249-024-02790-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-024-02790-1

Keywords

Navigation