Skip to main content

Advertisement

Log in

Development of pH-Sensitive Nanoparticle Incorporated into Dissolving Microarray Patch for Selective Delivery of Methotrexate

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Purpose

Rheumatoid arthritis (RA) is a systemic autoimmune disease that attacks human joints. Methotrexate (MTX), as one the most effective medications to treat RA, has limitations when administered either orally or by injection. To overcome this limitation, we formulated MTX through a smart nanoparticle (SNP) combined with dissolving microarray patch (DMAP) to achieve selective-targeted delivery of RA.

Methods

SNP was made using the combination of polyethylene glycol (PEG) and polycaprolactone (PCL) polymers, while DMAP was made using the combination of hyaluronic acid and polyvinylpyrrolidone K-30. SNP-DMAP was then evaluated for its mechanical and chemical characteristics, ex vivo permeation test, in vivo pharmacokinetic study, hemolysis, and hen’s egg test-chorioallantoic membrane (HET-CAM) test.

Result

The results showed that the characteristics of the SNP-DMAP-MTX formulas meet the requirements for transdermal delivery, with the particle size of 189.09 ±12.30 nm and absorption efficiency of 65.40 ± 5.0%. The hemolysis and HET-CAM testing indicate that this formula was non-toxic and non-irritating. Ex vivo permeation shows a concentration of 51.50 ± 3.20 µg/mL of SNP-DMAP-MTX in PBS pH 5.0. The pharmacokinetic profile of SNP-DMAP-MTX showed selectivity and sustained release compared with oral and DMAP-MTX with values of t1/2 (4.88 ± 0 h), Tmax (8 ± 0 h), Cmax (0.50 ± 0.04 μg/mL), AUC (3.15 ± 0.54 μg/mL.h), and mean residence time (MRT) (9.13 ± 0 h).

Conclusion

The developed SNP-DMAP-MTX has been proven to deliver MTX transdermal and selectively at the RA site, potentially avoiding conventional MTX side effects and enhancing the effectiveness of RA therapy.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Wang X, Cao W, Sun C, Wang Y, Wang M, Wu J. Development of pH-sensitive dextran-based methotrexate nanodrug for rheumatoid arthritis therapy through inhibition of JAK-STAT pathways. Int J Pharm. 2022;622:121874. https://doi.org/10.1016/j.ijpharm.2022.121874.

    Article  CAS  PubMed  Google Scholar 

  2. Guo Q, Wang Y, Xu D, Nossent J, Pavlos NJ, Xu J. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res. 2018;6(1):15. https://doi.org/10.1038/s41413-018-0016-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wu D, et al. Systemic complications of rheumatoid arthritis: focus on pathogenesis and treatment. Front Immunol. 2022;13:1051082. https://doi.org/10.3389/fimmu.2022.1051082. (Frontiers Media S.A).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jiang W, et al. The impact of perioperative use of nonbiologic disease-modifying anti-rheumatic drugs on perioperative blood loss and complications in patients who have rheumatoid arthritis undergoing total knee arthroplasty. J Arthrop. 2023. https://doi.org/10.1016/j.arth.2023.01.059.

    Article  Google Scholar 

  5. Hidayat R et al. Diagnosis dan Pengelolaan U N A N RE U M A T OL OG I I N D O N E S I A IRA JAKARTA. 2021.

  6. Hussein R, Aboukhamis I. The association of serum RANKL levels with disease activity and hematological parameters in Syrian patients with rheumatoid arthritis. Biochem Biophys Rep. 2020;32:101373. https://doi.org/10.1016/j.bbrep.2022.101373.

    Article  CAS  Google Scholar 

  7. Tekko IA, et al. Development and characterisation of novel poly (vinyl alcohol)/poly (vinyl pyrrolidone)-based hydrogel-forming microneedle arrays for enhanced and sustained transdermal delivery of methotrexate. Int J Pharm. 2020;586:119580. https://doi.org/10.1016/j.ijpharm.2020.119580.

    Article  CAS  PubMed  Google Scholar 

  8. Shah R, Bhattacharya S. Preparation and physical characterization of methotrexate encapsulated poly (n-methyl glycine) microspheres for the Rheumatoid arthritis treatment option. Results Chem. 2023;5:100875. https://doi.org/10.1016/j.rechem.2023.100875.

    Article  CAS  Google Scholar 

  9. Majorczyk E, Mazurek-Mochol M, Pawlik A, Kuśnierczyk P. Clinical factors and the outcome of treatment with methotrexate in rheumatoid arthritis: role of rheumatoid factor, erosive disease and high level of erythrocyte sedimentation rate. J Clin Med. 2022;11:6078. https://doi.org/10.3390/jcm11206078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Katturajan R, Rasool VSM, Prince SE. Molecular toxicity of methotrexate in rheumatoid arthritis treatment: a novel perspective and therapeutic implications. Toxicology. 2021;461:152909. https://doi.org/10.1016/j.tox.2021.152909. (Elsevier Ireland Ltd).

    Article  CAS  PubMed  Google Scholar 

  11. Friedman B, Cronstein B. Methotrexate mechanism in treatment of rheumatoid arthritis. Joint Bone Spine. 2019;86(3):301–7. https://doi.org/10.1016/j.jbspin.2018.07.004. (Elsevier Masson).

    Article  CAS  PubMed  Google Scholar 

  12. Tekko IA, Permana AD, Vora L, Hatahet T, McCarthy HO, Donnelly RF. Localised and sustained intradermal delivery of methotrexate using nanocrystal-loaded microneedle arrays: potential for enhanced treatment of psoriasis. Eur J Pharm Sci. 2020;152:105469. https://doi.org/10.1016/j.ejps.2020.105469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Qindeel M, Khan D, Ahmed N, Khan S, Rehman AU. Surfactant-free, self-assembled nanomicelles-based transdermal hydrogel for safe and targeted delivery of methotrexate against rheumatoid arthritis”. ACS Nano. 2020;14(4):4662–81. https://doi.org/10.1021/acsnano.0c00364.

    Article  CAS  PubMed  Google Scholar 

  14. Simón-Vázquez R, et al. Improving dexamethasone drug loading and efficacy in treating arthritis through a lipophilic prodrug entrapped into PLGA-PEG nanoparticles. Drug Deliv Transl Res. 2022;12(5):1270–84. https://doi.org/10.1007/s13346-021-01112-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brandt JV, et al. Synthesis and colloidal characterization of folic acid-modified PEG-b-PCL Micelles for methotrexate delivery. Colloids Surf B Biointerfaces. 2019;177:228–34. https://doi.org/10.1016/j.colsurfb.2019.02.008.

    Article  CAS  PubMed  Google Scholar 

  16. Anita C, Munira M, Mural Q, Shaily L. Topical nanocarriers for management of rheumatoid arthritis: a review. Biomed Pharmacother. 2021;141:111880. https://doi.org/10.1016/j.biopha.2021.111880.

    Article  CAS  PubMed  Google Scholar 

  17. Ananda PWR, Elim D, Zaman HS, Muslimin W, Tunggeng MGR, Permana AD. Combination of transdermal patches and solid microneedles for improved transdermal delivery of primaquine”. Int J Pharm. 2021;609:121204. https://doi.org/10.1016/j.ijpharm.2021.121204.

    Article  CAS  PubMed  Google Scholar 

  18. Huang C, et al. A novel hyaluronic acid-based dissolving microneedle patch loaded with ginsenoside Rg3 liposome for effectively alleviate psoriasis. Mater Des. 2022;224:111363. https://doi.org/10.1016/j.matdes.2022.111363.

    Article  CAS  Google Scholar 

  19. Permana AD, Elim D, Ananda PWR, Zaman HS, Muslimin W, Tunggeng MGR. Enhanced and sustained transdermal delivery of primaquine from polymeric thermoresponsive hydrogels in combination with Dermarollers®. Colloids Surf B Biointerfaces. 2022;219:112805. https://doi.org/10.1016/j.colsurfb.2022.112805.

    Article  CAS  PubMed  Google Scholar 

  20. Lyu S, et al. Going below and beyond the surface: microneedle structure, materials, drugs, fabrication, and applications for wound healing and tissue regeneration. Bioact Mater. 2023;27:303–26. https://doi.org/10.1016/j.bioactmat.2023.04.003. (KeAi Communications Co.).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Syafika N, et al. Glucose-responsive microparticle-loaded dissolving microneedles for selective delivery of metformin: a proof-of-concept study. Mol Pharm. 2023;20(2):1269–84. https://doi.org/10.1021/acs.molpharmaceut.2c00936.

    Article  CAS  PubMed  Google Scholar 

  22. Vora LK, et al. Microneedle array systems for long-acting drug delivery. Eur J Pharm Biopharm. 2021;159:44–76. https://doi.org/10.1016/j.ejpb.2020.12.006.

    Article  CAS  PubMed  Google Scholar 

  23. He J, et al. Design and evaluation of dissolving microneedles for enhanced dermal delivery of propranolol hydrochloride. Pharmaceutics. 2021;13(4):579. https://doi.org/10.3390/pharmaceutics13040579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Permana AD, Paredes AJ, Volpe-Zanutto F, Anjani QK, Utomo E, Donnelly RF. Dissolving microneedle-mediated dermal delivery of itraconazole nanocrystals for improved treatment of cutaneous candidiasis. Eur J Pharm Biopharm. 2020;154:50–61. https://doi.org/10.1016/j.ejpb.2020.06.025.

    Article  CAS  PubMed  Google Scholar 

  25. Carrillo-Castillo TD, Castro-Carmona JS, Luna-Velasco A, Zaragoza-Contreras EA. PH-responsive polymer micelles for methotrexate delivery at tumor microenvironments. E-Polymers. 2020;20(1):624–35. https://doi.org/10.1515/epoly-2020-0064.

    Article  CAS  Google Scholar 

  26. Mudjahid M, Sulistiawati RM, Asri FN, Permana AD. Validation of spectrophotometric method to quantify chloramphenicol in fluid and rat skin tissue mimicking infection environment: Application to in vitro release and ex vivo dermatokinetic studies from dissolving microneedle loaded microparticle sensitive bacteria. Spectrochim Acta A Mol Biomol Spectrosc. 2023;291:122374. https://doi.org/10.1016/j.saa.2023.122374.

    Article  CAS  PubMed  Google Scholar 

  27. Permana AD, et al. Solid lipid nanoparticle-based dissolving microneedles: a promising intradermal lymph targeting drug delivery system with potential for enhanced treatment of lymphatic filariasis. J Control Rel. 2019;316:34–52. https://doi.org/10.1016/j.jconrel.2019.10.004.

    Article  CAS  Google Scholar 

  28. Paredes AJ, et al. Ring inserts as a useful strategy to prepare tip-loaded microneedles for long-acting drug delivery with application in HIV pre-exposure prophylaxis. Mater Des. 2022;224:111416. https://doi.org/10.1016/j.matdes.2022.111416.

    Article  CAS  Google Scholar 

  29. Elim D, et al. Hydrogel forming microneedle-mediated transdermal delivery of sildenafil citrate from polyethylene glycol reservoir: an ex vivo proof of concept study. Colloids Surf B Biointerfaces. 2023;222:113018. https://doi.org/10.1016/j.colsurfb.2022.113018.

    Article  CAS  PubMed  Google Scholar 

  30. Azizi-Khereshki N, Mousavi HZ, Dogaheh MG, Farsadrooh M, Alizadeh N, Mohammadi A. Synthesis of molecularly imprinted polymer as a nanosorbent for dispersive magnetic micro solid-phase extraction and determination of valsartan in biological samples by UV–Vis Spectrophotometry: Isotherm, kinetics, and thermodynamic studies”. Spectrochim Acta A Mol Biomol Spectrosc. 2023;296:122656. https://doi.org/10.1016/j.saa.2023.122656.

    Article  CAS  PubMed  Google Scholar 

  31. Golsanamlu Z, Soleymani J, Gharekhani A, Jouyban A. In-situ preparation of norepinephrine-functionalized silver nanoparticles and application for colorimetric detection of tacrolimus in plasma samples”. Heliyon. 2023;9(8):e18404. https://doi.org/10.1016/j.heliyon.2023.e18404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zebbiche Y, Yahia AK, Keraghel NEY, Sarah F, Islam CA, Yacine AM. Validation of a simple spectrophotometric method for the rapid determination of salicylates in plasma. J Pharmacol Toxicol Methods. 2023;124:107475. https://doi.org/10.1016/j.vascn.2023.107475.

    Article  CAS  PubMed  Google Scholar 

  33. Sastry CSP, Lingeswara Rao JSVM. Spectrophotometric methods for the determination of methotrexate in pharmaceutical formulations. Anal Lett. 1996;29(10):1763–78. https://doi.org/10.1080/00032719608001522.

    Article  CAS  Google Scholar 

  34. ICCVAM-Recommended Test method protocol: hen’s egg test-chorioallantoic membrane (HET-CAM) test method. [Online]. Available: http://iccvam.niehs.nih.gov/methods/ocutox/MildMod-TMER.htm.

  35. Wu Y, et al. Nanosuspension-loaded dissolving bilayer microneedles for hydrophobic drug delivery to the posterior segment of the eye. Biomater Adv. 2022;137:212767. https://doi.org/10.1016/j.bioadv.2022.212767.

    Article  CAS  PubMed  Google Scholar 

  36. Mir M, et al. Microneedle liquid injection system assisted delivery of infection responsive nanoparticles: A promising approach for enhanced site-specific delivery of carvacrol against polymicrobial biofilms-infected wounds. Int J Pharm. 2020;587:119643. https://doi.org/10.1016/j.ijpharm.2020.119643.

    Article  CAS  PubMed  Google Scholar 

  37. Atipairin A, Chunhachaichana C, Nakpheng T, Changsan N, Srichana T, Sawatdee S. Development of a sildenafil citrate microemulsion-loaded hydrogel as a potential system for drug delivery to the penis and its cellular metabolic mechanism. Pharmaceutics. 2020;12(11):1–23. https://doi.org/10.3390/pharmaceutics12111055.

    Article  CAS  Google Scholar 

  38. Calderon-jacinto R, Matricardi P, Gueguen V, Pavon-djavid G, Pauthe E, Rodriguez-ruiz V. Dual nanostructured lipid carriers/hydrogel system for delivery of curcumin for topical skin applications. Biomolecules. 2022;12(6):780. https://doi.org/10.3390/biom12060780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mir M, Permana AD, Ahmed N, Khan GM, Rehman AU, Donnelly RF. Enhancement in site-specific delivery of carvacrol for potential treatment of infected wounds using infection responsive nanoparticles loaded into dissolving microneedles: a proof of concept study. Eur J Pharm Biopharm. 2020;147:57–68. https://doi.org/10.1016/j.ejpb.2019.12.008.

    Article  CAS  PubMed  Google Scholar 

  40. Snejdrova E, et al. Rifampicin-loaded PLGA nanoparticles for local treatment of musculoskeletal infections: Formulation and characterization. J Drug Deliv Sci Technol. 2022;73:103435. https://doi.org/10.1016/j.jddst.2022.103435.

    Article  CAS  Google Scholar 

  41. Folle C, et al. Thymol-loaded PLGA nanoparticles: an efficient approach for acne treatment. J Nanobiotechnology. 2021;19(1):103435. https://doi.org/10.1186/s12951-021-01092-z.

    Article  CAS  Google Scholar 

  42. Liu Y, Yang G, Jin S, Xu L, Xia Zhao C-. Development of high-drug-loading nanoparticles. Chemistry Eur. 2022;85(9):2143–57.

    Google Scholar 

  43. Rostamizadeh K, Manafi M, Nosrati H, Manjili HK, Danafar H. Correction: Methotrexate-conjugated mPEG-PCL copolymers: a novel approach for dual triggered drug delivery (New Journal of Chemistry (2018) 42 (5937-59450. https://doi.org/10.1039/C7NJ04864E). New Journal of Chemistry 43, no. 26. Royal Society of Chemistry, p. 10658, 2019. https://doi.org/10.1039/c9nj90085c.

  44. Suresh P, et al. Development of a novel methotrexate-loaded nanoemulsion for rheumatoid arthritis treatment with site-specific targeting subcutaneous delivery. Nanomaterials. 2022;12(8):1299. https://doi.org/10.3390/nano12081299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Singh S, Alrobaian MM, Molugulu N, Agrawal N, Numan A, Kesharwani P. Pyramid-shaped PEG-PCL-PEG polymeric-based model systems for site-specific drug delivery of vancomycin with enhance antibacterial efficacy. ACS Omega. 2020;5(21):11935–45. https://doi.org/10.1021/acsomega.9b04064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jang JH, Jeong SH, Lee YB. Preparation and in vitro/in vivo characterization of polymeric nanoparticles containing methotrexate to improve lymphatic delivery. Int J Mol Sci. 2019;20(13):3312. https://doi.org/10.3390/ijms20133312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhao W, Zheng L, Yang J, Ma Z, Tao X, Wang Q. Dissolving microneedle patch-assisted transdermal delivery of methotrexate improve the therapeutic efficacy of rheumatoid arthritis. Drug Deliv. 2023;30(1):121–32. https://doi.org/10.1080/10717544.2022.2157518.

    Article  CAS  PubMed  Google Scholar 

  48. Alsaikhan F. Hyaluronic acid-empowered nanotheranostics in breast and lung cancers therapy. Environ Res. 2023;237:116951. https://doi.org/10.1016/j.envres.2023.116951.

    Article  CAS  PubMed  Google Scholar 

  49. Makvandi P, et al. Engineering microneedle patches for improved penetration: analysis, skin models and factors affecting needle insertion. Nano-Micro Lett. 2021;13(1):93. https://doi.org/10.1007/s40820-021-00611-9.

    Article  CAS  Google Scholar 

  50. Mahfufah U, et al. Application of multipolymers system in the development of hydrogel-forming microneedle integrated with polyethylene glycol reservoir for transdermal delivery of albendazole. Eur Polym J. 2023;183:111762. https://doi.org/10.1016/j.eurpolymj.2022.111762.

    Article  CAS  Google Scholar 

  51. Cheng A, Sun W, Xing M, Zhang S, Gao Y. The hygroscopicity of polymer microneedles on the performance of dissolving behavior for transdermal delivery. Inte J Poly Mater Poly Biomater. 2022;71(1):72–8. https://doi.org/10.1080/00914037.2020.1798442.

    Article  CAS  Google Scholar 

  52. Qindeel M, Ahmed N, Sabir F, Khan S, Ur-Rehman A. Development of novel pH-sensitive nanoparticles loaded hydrogel for transdermal drug delivery. Drug Dev Ind Pharm. 2019;45(4):629–41. https://doi.org/10.1080/03639045.2019.1569031.

    Article  CAS  PubMed  Google Scholar 

  53. de Araujo Lowndes Viera LM, Silva RS, da Silva CC, Presgrave OAF, Boas MHSV. Comparison of the different protocols of the Hen’s Egg Test-Chorioallantoic Membrane (HET-CAM) by evaluating the eye irritation potential of surfactants. Toxicol in Vitro. 2022; 78, https://doi.org/10.1016/j.tiv.2021.105255.

  54. Laothaweerungsawat N, Neimkhum W, Anuchapreeda S, Sirithunyalug J, Chaiyana W. Transdermal delivery enhancement of carvacrol from Origanum vulgare L. essential oil by microemulsion. Int J Pharm. 2020;579:119052. https://doi.org/10.1016/j.ijpharm.2020.119052.

    Article  CAS  PubMed  Google Scholar 

  55. Raj Sharma D, Pandit V, Ashawat M. Review article: recent advancement in transdermal drug delivery system (Tdds). [Online]. Available: http://journalppw.com.

  56. Yu YQ, Yang X, Wu XF, Bin Fan Y. Enhancing permeation of drug molecules across the skin via delivery in nanocarriers: novel strategies for effective transdermal applications. Front Bioeng Biotechnol. 2021;9:646554. https://doi.org/10.3389/fbioe.2021.646554. (Frontiers Media S.A.).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Pandit J, et al. Fenofibrate loaded nanofibers based thermo-responsive gel for ocular delivery: formulation development, characterization and in vitro toxicity study. J Drug Deliv Sci Technol. 2023;89:104935. https://doi.org/10.1016/j.jddst.2023.104935.

    Article  CAS  Google Scholar 

Download references

Funding

The author is grateful to the Program Kreativitas Mahasiswa (PKM), Directorate General of Higher Education, Ministry of Education and Culture of the Republic of Indonesia for their support.

Author information

Authors and Affiliations

Authors

Contributions

N.Q.F.: conceptualization, methodology, and writing the manuscript. A.Y.R.A.: methodology and writing the manuscript. M.G.R.T.: methodology and writing the manuscript. I.D.R.: methodology and writing the manuscript. N.S.: methodology and writing the manuscript. S.B.A.A.: data curation and validation. Y.Y.D.: data curation and validation. R.M.A.: data curation and validation. A.D.P.: conceptualized, reviewed, finalized, funding acquisition, edited the manuscript and supervision.

Corresponding author

Correspondence to Andi Dian Permana.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Febrianti, N.Q., Aziz, A.Y.R., Tunggeng, M.G.R. et al. Development of pH-Sensitive Nanoparticle Incorporated into Dissolving Microarray Patch for Selective Delivery of Methotrexate. AAPS PharmSciTech 25, 70 (2024). https://doi.org/10.1208/s12249-024-02777-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-024-02777-y

Keywords

Navigation