Skip to main content
Log in

Fabrication of 3D-Printed Hydrocortisone Triple Pulsatile Tablet Using Fused Deposition Modelling Technology

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Hydrocortisone (HC) is the optimal drug for adolescents diagnosed with congenital adrenal hyperplasia (CAH). Because traditional dosage regimens HC are inconvenient, our study used fused deposition modeling (FDM) three-dimensional (3D) printing technology to solve the problems caused by traditional preparations. First, we designed a core–shell structure tablet with an inner instant release component and an outer delayed release shell. The instant release component was Kollicoat IR: glycerol (GLY): HC = 76.5:13.5:10. Then, we used Affinisol® HPMC 15LV to realize delayed release. Furthermore, we investigated the relationship between the thickness of the delayed release shell and the delayed release time, and an equation was derived through binomial regression analysis. Based on that equation, a novel triple pulsatile tablet with an innovative structure was devised. The tablet was divided into three components, and the drug was released multiple times at different times. The dose and release rate of the tablets can be adjusted by modifying the infill rate of the printing model. The results indicated that the triple pulsatile tablet exhibited desirable release behavior in vitro. Moreover, the physicochemical properties of the drug, excipients, filaments, and tablets were characterized. All these results indicate that the FDM 3D printing method is a convenient technique for producing preparations with intricate structures.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Nermoen I, Husebye ES, Myhre AG, Lovas K. Classic congenital adrenal hyperplasia. Tidsskrift for den Norske laegeforening : tidsskrift for praktisk medicin, ny raekke. 2017;137(7):540-3. https://doi.org/10.4045/tidsskr.16.0376.

  2. Gong C, Cheng X, Yan L, Li Z, Gou P, Tang F, et al. Clinical analysis of 28 cases of neonatal congenital adrenal hyperplasia Sichuan Medical Journal. 2021;42(03):240–4. https://doi.org/10.16252/j.cnki.issn1004-0501-2021.03.006..

  3. Idkowiak J, Elhassan YS, Mannion P, Smith K, Webster R, Saraff V, et al. Causes, patterns and severity of androgen excess in 487 consecutively recruited pre- and post-pubertal children. Eur J Endocrinol. 2019;180(3):213–21. https://doi.org/10.1530/eje-18-0854.

    Article  CAS  PubMed  Google Scholar 

  4. Lu WL, Ma XY, Zhang J, Wang JQ, Zhang TT, Ye L, et al. Clinical and molecular characterization of 10 Chinese children with congenital adrenal hyperplasia due to 11beta-hydroxylase deficiency. World J Pediatr. 2023. https://doi.org/10.1007/s12519-023-00739-1.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pofi R, Ji XC, Krone NP, Tomlinson JW. Long-term health consequences of congenital adrenal hyperplasia. Clin Endocrinol. 2023. https://doi.org/10.1111/cen.14967.

    Article  Google Scholar 

  6. Debor B, Bechtold-Dalla Pozza S, Reisch N, Schmidt H, Dubinski I. Effect of complete suppression of androstenedione on auxological development in prepubertal patients with classical congenital adrenal hyperplasia. J Pediatr Endocrinol Metab: JPEM. 2023. https://doi.org/10.1515/jpem-2023-0169.

    Article  PubMed  Google Scholar 

  7. Finkielstain GP, Rey RA. Challenges in managing disorders of sex development associated with adrenal dysfunction. Expert Rev Endocrinol Metab. 2023;18(5):427–39. https://doi.org/10.1080/17446651.2023.2256393.

    Article  CAS  PubMed  Google Scholar 

  8. Bridwell RE, April MD. Adrenal emergencies. Emerg Med Clin North Am. 2023;41(4):795–808. https://doi.org/10.1016/j.emc.2023.06.006.

    Article  PubMed  Google Scholar 

  9. Frigerio S, Carosi G, Ferrante E, Sala E, Polledri E, Fustinoni S, et al. Effects of the therapy shift from cortisone acetate to modified-release hydrocortisone in a group of patients with adrenal insufficiency. Front Endocrinol. 2023;14. https://doi.org/10.3389/fendo.2023.1093838.

  10. Puglisi S, Perini AME, Botto C, Oliva F, Terzolo M. Long-term consequences of Cushing’s syndrome: a systematic literature review. J Clin Endocrinol Metab. 2023. https://doi.org/10.1210/clinem/dgad453.

    Article  PubMed  Google Scholar 

  11. Papadakis GE, de Kalbermatten B, Dormoy A, Salenave S, Trabado S, Vieira-Pinto O, et al. Impact of Cushing’s syndrome on the gonadotrope axis and testicular functions in men. Hum Reprod. 2023. https://doi.org/10.1093/humrep/dead187.

    Article  PubMed  Google Scholar 

  12. Whitaker MJ, Debono M, Ross RJ. Developing oral chronotherapy for cortisol replacement in congenital adrenal hyperplasia. Clin Endocrinol. 2023. https://doi.org/10.1111/cen.14976.

    Article  Google Scholar 

  13. Derendorf H, Mollmann H, Barth J, Mollmann C, Tunn S, Krieg M. Pharmacokinetics and oral bioavailability of hydrocortisone. J Clin Pharmacol. 1991;31(5):473–6. https://doi.org/10.1002/j.1552-4604.1991.tb01906.x.

    Article  CAS  PubMed  Google Scholar 

  14. Bonner JJ, Burt H, Johnson TN, Whitaker MJ, Porter J, Ross RJ. Development and verification of an endogenous PBPK model to inform hydrocortisone replacement dosing in children and adults with cortisol deficiency. Eur J Pharm Sci. 2021;165. https://doi.org/10.1016/j.ejps.2021.105913..

  15. Hens B, Corsetti M, Bermejo M, Löbenberg R, González PM, Mitra A, et al. "Development of fixed dose combination products" workshop report: considerations of gastrointestinal physiology and overall development strategy. AAPS J. 2019;21(4). https://doi.org/10.1208/s12248-019-0346-6.

  16. Sunil SA, Srikanth MV, Rao NS, Murthy KVR. Chronotherapeutic drug delivery from indomethacin compression coated tablets for early morning pain associated rheumatoid arthritis. Curr Drug Deliv. 2013;10(1):109–21.

    Article  CAS  PubMed  Google Scholar 

  17. Bhat BB, Mehta CH, Suresh A, Velagacherla V, Nayak UY. Controlled release technologies for chronotherapy: current status and future perspectives. Curr Pharm Des. 2023;29(14):1069–91. https://doi.org/10.2174/1381612829666230423144232.

    Article  CAS  PubMed  Google Scholar 

  18. Charoenthai N, Wickramanayaka A, Sungthongjeen S, Puttipipatkhachorn S. Use of cassava starch nanocrystals to make a robust rupturable pulsatile release pellet. J Drug Deliv Sci Technol. 2018;47:283–90. https://doi.org/10.1016/j.jddst.2018.07.026.

    Article  CAS  Google Scholar 

  19. Penhasi A, Gomberg M. Design and development of an innovative water insoluble film-coating combination for oral pulsatile drug delivery. J Drug Deliv Sci Technol. 2018;43:274–82. https://doi.org/10.1016/j.jddst.2017.10.019.

    Article  CAS  Google Scholar 

  20. Adam D. Emerging science of chronotherapy offers big opportunities to optimize drug delivery. Proc Natl Acad Sci USA. 2019;116(44):21957–9. https://doi.org/10.1073/pnas.1916118116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Field EA, Brookes V, Tyldesley WR. Recurrent aphthous ulceration in children–a review. Int J Pediatr Dent. 1992;2(1):1–10.

    Article  CAS  Google Scholar 

  22. Sarvan MS, Nori LP. Personalized medicine: a new normal for therapeutic success. Indian J Pharm Sci. 2021;83(3):416–29. https://doi.org/10.36468/pharmaceutical-sciences.790.

    Article  Google Scholar 

  23. Amekyeh H, Tarlochan F, Billa N. Practicality of 3D printed personalized medicines in therapeutics. Front Pharmacol. 2021;12. https://doi.org/10.3389/fphar.2021.646836.

  24. Algahtani MS. Assessment of pharmacist’s knowledge and perception toward 3D printing technology as a dispensing method for personalized medicine and the readiness for implementation. Pharmacy (Basel, Switzerland). 2021;9(1). https://doi.org/10.3390/pharmacy9010068.

  25. Beer N, Hegger I, Kaae S, De Bruin ML, Genina N, Alves TL, et al. Scenarios for 3D printing of personalized medicines - a case study. Exploratory Res Clin Soc Pharm. 2021;4:100073. https://doi.org/10.1016/j.rcsop.2021.100073.

    Article  Google Scholar 

  26. Englezos K, Wang LX, Tan ECK, Kang LF. 3D printing for personalised medicines: implications for policy and practice. Int J Pharm. 2023;635. https://doi.org/10.1016/j.ijpharm.2023.122785..

  27. Cui MS, Pan H, Su YP, Fang DY, Qiao S, Ding PT, et al. Opportunities and challenges of three-dimensional printing technology in pharmaceutical formulation development. Acta Pharmaceutica Sinica B. 2021;11(8):2488–504. https://doi.org/10.1016/j.apsb.2021.03.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kotta S, Nair A, Alsabeelah N. 3D printing technology in drug delivery: recent progress and application. Curr Pharm Des. 2018;24(42):5039–48. https://doi.org/10.2174/1381612825666181206123828.

    Article  CAS  PubMed  Google Scholar 

  29. Wang JW, Zhang Y, Aghda NH, Pillai AR, Thakkar R, Nokhodchi A, et al. Emerging 3D printing technologies for drug delivery devices: current status and future perspective. Adv Drug Deliv Rev. 2021;174:294–316. https://doi.org/10.1016/j.addr.2021.04.019.

    Article  CAS  PubMed  Google Scholar 

  30. Long J, Gholizadeh H, Lu J, Bunt C, Seyfoddin A. Application of fused deposition modelling (FDM) method of 3D printing in drug delivery. Curr Pharm Des. 2017;23(3):433–9. https://doi.org/10.2174/1381612822666161026162707.

    Article  CAS  PubMed  Google Scholar 

  31. Muhindo D, Elkanayati R, Srinivasan P, Repka MA, Ashour EA. Recent advances in the applications of additive manufacturing (3D printing) in drug delivery: a comprehensive review (vol 24, 57, 2023). AAPS PharmSciTech. 2023;24(3):75. https://doi.org/10.1208/s12249-023-02542-7.

    Article  PubMed  Google Scholar 

  32. Gioumouxouzis CI, Karavasili C, Fatouros DG. Recent advances in pharmaceutical dosage forms and devices using additive manufacturing technologies. Drug Disc Today. 2019;24(2):636–43. https://doi.org/10.1016/j.drudis.2018.11.019.

    Article  CAS  Google Scholar 

  33. Alhijjaj M, Belton P, Qi S. An investigation into the use of polymer blends to improve the printability of and regulate drug release from pharmaceutical solid dispersions prepared via fused deposition modeling (FDM) 3D printing. Eur J Pharm Biopharm. 2016;108:111–25. https://doi.org/10.1016/j.ejpb.2016.08.016.

    Article  CAS  PubMed  Google Scholar 

  34. Chen H, Li X, Gong Y, Bu T, Wang X, Pan H. Unidirectional drug release from 3D printed personalized buccal patches using FDM technology. International Journal of Pharmaceutics. 2023:123382. https://doi.org/10.1016/j.ijpharm.2023.123382.

  35. Goyanes A, Kobayashi M, Martínez-Pacheco R, Gaisford S, Basit AW. Fused-filament 3D printing of drug products: microstructure analysis and drug release characteristics of PVA-based caplets. Int J Pharm. 2016;514(1):290–5. https://doi.org/10.1016/j.ijpharm.2016.06.021.

    Article  CAS  PubMed  Google Scholar 

  36. Sharma V, Shaik KM, Choudhury A, Kumar P, Kala P, Sultana Y, et al. Investigations of process parameters during dissolution studies of drug loaded 3D printed tablets. Proc Inst Mech Eng Part H-J Eng Med. 2021;235(5):523–9. https://doi.org/10.1177/0954411921993582.

    Article  Google Scholar 

  37. Mahmood F, Hussain A, Arshad MS, Abbas N, Irfan M, Qamar N, et al. Effect of solublising aids on the entrapment of loratidine in pre-fabricated PVA filaments used for FDM based 3D-printing. Acta Pol Pharm. 2020;77(1):175–82. https://doi.org/10.32383/appdr/113596.

    Article  CAS  Google Scholar 

  38. Melocchi A, Uboldi M, Cerea M, Foppoli A, Maroni A, Moutaharrik S, et al. A graphical review on the escalation of fused deposition modeling (FDM) 3D printing in the pharmaceutical field. J Pharm Sci. 2020;109(10):2943–57. https://doi.org/10.1016/j.xphs.2020.07.011.

    Article  CAS  PubMed  Google Scholar 

  39. Chai X, Chai H, Wang X, Yang J, Li J, Zhao Y, et al. Fused deposition modeling (FDM) 3D printed tablets for intragastric floating delivery of domperidone. Sci Rep. 2017;7:2829. https://doi.org/10.1038/s41598-017-03097-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jamroz W, Kurek M, Szafraniec-Szczesny J, Czech A, Gawlak K, Knapik-Kowalczuk J, et al. Speed it up, slow it down...an issue of bicalutamide release from 3D printed tablets. Eur J Pharm Sci. 2020;143:105169. https://doi.org/10.1016/j.ejps.2019.105169.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang PL, Xu PC, Chung S, Bandari S, Repka MA. Fabrication of bilayer tablets using hot melt extrusion-based dual-nozzle fused deposition modeling 3D printing. Int J Pharm. 2022;624. https://doi.org/10.1016/j.ijpharm.2022.121972.

  42. Gioumouxouzis CI, Tzimtzimis E, Katsamenis OL, Dourou A, Markopoulou C, Bouropoulos N, et al. Fabrication of an osmotic 3D printed solid dosage form for controlled release of active pharmaceutical ingredients. Eur J Pharm Sci. 2020;143:105176. https://doi.org/10.1016/j.ejps.2019.105176.

    Article  CAS  PubMed  Google Scholar 

  43. Annaji M, Mita N, Heard J, Kang X, Poudel I, Fasina O, et al. 3D-printed capsaicin-loaded injectable implants for targeted delivery in obese patients. AAPS PharmSciTech. 2023;24(7):200. https://doi.org/10.1208/s12249-023-02647-z.

    Article  CAS  PubMed  Google Scholar 

  44. Cui YD, Chen B, Wang G, Wang JT, Liu B, Zhu L, et al. Partial talar replacement with a novel 3D printed prosthesis. Comput Assist Surg. 2023;28(1). https://doi.org/10.1080/24699322.2023.2198106..

  45. Gupta T, Ghosh SB, Bandyopadhyay-Ghosh S, Sain M. Is it possible to 3D bioprint load-bearing bone implants? A critical review. Biofabrication. 2023;15(4). https://doi.org/10.1088/1758-5090/acf6e1..

  46. Gioumouxouzis CI, Baklavaridis A, Katsamenis OL, Markopoulou CK, Bouropoulos N, Tzetzis D, et al. A 3D printed bilayer oral solid dosage form combining metformin for prolonged and glimepiride for immediate drug delivery. Eur J Pharm Sci. 2018;120:40–52. https://doi.org/10.1016/j.ejps.2018.04.020.

    Article  CAS  PubMed  Google Scholar 

  47. Melocchi A, Uboldi M, Briatico-Vangosa F, Moutaharrik S, Cerea M, Foppoli A, et al. The Chronotopic (TM) system for pulsatile and colonic delivery of active molecules in the era of precision medicine: feasibility by 3D printing via fused deposition modeling (FDM). Pharmaceutics. 2021;13(5). https://doi.org/10.3390/pharmaceutics13050759.

  48. Tidau M, Finke JH. Modified release kinetics in dual filament 3D printed individualized oral dosage forms. Eur J Pharm Sci. 2022;175. https://doi.org/10.1016/j.ejps.2022.106221..

  49. Eleftheriadis GK, Ritzoulis C, Bouropoulos N, Tzetzis D, Andreadis DA, Boetker J, et al. Unidirectional drug release from 3D printed mucoadhesive buccal films using FDM technology: in vitro and ex vivo evaluation. Eur J Pharm Biopharm. 2019;144:180–92. https://doi.org/10.1016/j.ejpb.2019.09.018.

    Article  CAS  PubMed  Google Scholar 

  50. Chen H, Li X, Gong Y, Bu TS, Wang XY, Pan H. Unidirectional drug release from 3D printed personalized buccal patches using FDM technology. Int J Pharm. 2023;645. https://doi.org/10.1016/j.ijpharm.2023.123382..

  51. McDonagh T, Belton P, Qi S. Manipulating drug release from 3D printed dual-drug loaded polypills using challenging polymer compositions. Int J Pharm. 2023;637. https://doi.org/10.1016/j.ijpharm.2023.122895..

  52. Okwuosa TC, Pereira BC, Arafat B, Cieszynska M, Isreb A, Alhnan MA. Fabricating a shell-core delayed release tablet using dual FDM 3D printing for patient-centred therapy. Pharm Res. 2017;34(2):427–37. https://doi.org/10.1007/s11095-016-2073-3.

    Article  CAS  PubMed  Google Scholar 

  53. Yang TL, Stogiannari M, Janeczko S, Khoshan M, Lin YY, Isreb A, et al. Towards point-of-care manufacturing and analysis of immediate-release 3D printed hydrocortisone tablets for the treatment of congenital adrenal hyperplasia. Int J Pharm. 2023;642. https://doi.org/10.1016/j.ijpharm.2023.123072..

  54. Li R, Pan Y, Chen D, Xu XY, Yan GR, Fan TY. Design, preparation and in vitro evaluation of core-shell fused deposition modelling 3D-printed verapamil hydrochloride pulsatile tablets. Pharmaceutics. 2022;14(2). https://doi.org/10.3390/pharmaceutics14020437..

  55. Parulski C, Bya LA, Goebel J, Servais AC, Lechanteur A, Evrard B. Development of 3D printed mini-waffle shapes containing hydrocortisone for children’s personalized medicine. Int J Pharm. 2023;642. https://doi.org/10.1016/j.ijpharm.2023.123131..

  56. Ayyoubi S, van Kampen EEM, Kocabas LI, Parulski C, Lechanteur A, Evrard B, et al. 3D printed, personalized sustained release cortisol for patients with adrenal insufficiency. Int J Pharm. 2023;630. https://doi.org/10.1016/j.ijpharm.2022.122466..

  57. Gupta SS, Solanki N, Serajuddin ATM. Investigation of thermal and viscoelastic properties of polymers relevant to hot melt extrusion, IV: Affinisol™ HPMC HME Polymers. AAPS PharmSciTech. 2016;17(1):148–57. https://doi.org/10.1208/s12249-015-0426-6.

    Article  CAS  PubMed  Google Scholar 

  58. Melocchi A, Parietti F, Maroni A, Foppoli A, Gazzaniga A, Zema L. Hot-melt extruded filaments based on pharmaceutical grade polymers for 3D printing by fused deposition modeling. Int J Pharm. 2016;509(1–2):255–63. https://doi.org/10.1016/j.ijpharm.2016.05.036.

    Article  CAS  PubMed  Google Scholar 

  59. Wu H, Liu YH, Ci TY, Ke X. Application of HPMC HME polymer as hot melt extrusion carrier in carbamazepine solid dispersion. Drug Dev Ind Pharm. 2020;46(12):1911–8. https://doi.org/10.1080/03639045.2020.1821045.

    Article  CAS  PubMed  Google Scholar 

  60. Svoboda R, Nevyhostena M, Machackova J, Vaculik J, Knotkova K, Chromcikova M, et al. Thermal degradation of Affinisol HPMC: optimum processing temperatures for hot melt extrusion and 3D printing. Pharm Res. 2023;40(9):2253–68. https://doi.org/10.1007/s11095-023-03592-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fouad EA, El-Badry M, Neau SH, Alanazi FK, Alsarra IA. Technology evaluation: Kollicoat IR. Expert Opin Drug Deliv. 2011;8(5):693–703. https://doi.org/10.1517/17425247.2011.566266.

    Article  CAS  PubMed  Google Scholar 

  62. Xu L, Li SM, Wang Y, Wei M, Yao HM, Sunada H. Improvement of dissolution rate of ibuprofen by solid dispersion systems with Kollicoat IR using a pulse combustion dryer system. J Drug Deliv Sci Technol. 2009;19(2):113–8. https://doi.org/10.1016/s1773-2247(09)50018-4.

    Article  CAS  Google Scholar 

  63. Kolter K, Dashevsky A, Irfan M, Bodmeier R. Polyvinyl acetate-based film coatings. Int J Pharm. 2013;457(2):470–9. https://doi.org/10.1016/j.ijpharm.2013.08.077.

    Article  CAS  PubMed  Google Scholar 

  64. Mandati P, Dumpa N, Alzahrani A, Nyavanandi D, Narala S, Wang HH, et al. Hot-melt extrusion-based fused deposition modeling 3D printing of atorvastatin calcium tablets: impact of shape and infill density on printability and performance. Aaps Pharmscitech. 2022;24(1). https://doi.org/10.1208/s12249-022-02470-y.

  65. Patel NG, Serajuddin ATM. Improving drug release rate, drug-polymer miscibility, printability and processability of FDM 3D-printed tablets by weak acid-base interaction. Int J Pharm. 2023;632. https://doi.org/10.1016/j.ijpharm.2022.122542.

  66. Wu JT, Chen N, Wang Q. Preparation of novel thermoplastic poly(vinyl alcohol) with improved processability for fused deposition modeling. Polym Adv Technol. 2018;29(5):1447–55. https://doi.org/10.1002/pat.4256.

    Article  CAS  Google Scholar 

  67. Saikia J, Devi TG, Karlo T. A combined spectroscopic and quantum chemical approach to study the molecular interaction between anti-inflammatory drug Hydrocortisone and amino acid L-Phenylalanine. J Mol Struct. 2023;1286. https://doi.org/10.1016/j.molstruc.2023.135546..

Download references

Author information

Authors and Affiliations

Authors

Contributions

Hao Chen: conceptualization, methodology, investigation, writing—original draft; Kai Zheng: software, validation, data curation; Tianshi Bu: resources, project administration, formal analysis, writing—review and editing; Xin LI: writing—review and editing, visualization; Xiangyu Wang: writing—review and editing; Hao Pan: conceptualization, methodology, supervision, funding acquisition.

Corresponding author

Correspondence to Hao Pan.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.  

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Zheng, K., Bu, T. et al. Fabrication of 3D-Printed Hydrocortisone Triple Pulsatile Tablet Using Fused Deposition Modelling Technology. AAPS PharmSciTech 25, 58 (2024). https://doi.org/10.1208/s12249-024-02757-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-024-02757-2

Keywords

Navigation