Skip to main content

Advertisement

Log in

The Use of Data Mining for Obtaining Deeper Insights into the Fabrication of Prednisolone-Loaded Chitosan Nanoparticles

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The present work explores a data mining approach to study the fabrication of prednisolone-loaded chitosan nanoparticles and their properties. Eight PLC formulations were prepared using an automated adaptation of the antisolvent precipitation method. The PLCs were characterized using dynamic light scattering, infrared spectroscopy, and drug release studies. Results showed that that the effective diameter, loading capacity, encapsulation efficiency, zeta potential, and polydispersity of the PLCs were influenced by the concentration and molecular weight of chitosan. The drug release studies showed that PLCs exhibited significant dissolution enhancement compared to pure prednisolone crystals. Principal components analysis and partial least squares regression were applied to the infrared spectra and the DLS data to extract higher-order interactions and correlations between the critical quality attributes and the diameter of the PLCs. Principal components revealed that the spectra clustered according to the type of material, with PLCs forming a separate cluster from the raw materials and the physical mix. PLS was successful in predicting the ED of the PLCs from the FTIR spectra with R2 = 0.98 and RMSE = 27.18. The present work demonstrates that data mining techniques can be useful tools for obtaining deeper insights into the fabrication and properties of PLCs, and for optimizing their quality and performance. It also suggests that FTIR spectroscopy can be a rapid and non-destructive method for predicting the ED of PLCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

PLC:

Prednisolone-loaded chitosan nanoparticles

PRED:

Prednisolone

HMW:

High molecular weight

MMW:

Medium molecular weight

ED:

Effective diameter

LC:

Loading capacity

EE:

Encapsulation efficiency

ZP:

Zeta potential

PD:

Polydispersity

ATR–FTIR:

Attenuated total reflectance–Fourier transform infrared spectroscopy1

DLS:

Dynamic light scattering

PCA:

Principal component analysis

PLS:

Partial least squares regression

R2:

Coefficient of determination

RMSE:

Residual mean square error

PAT:

Process analytical technologies

NIR:

Near-infrared

MW:

Molecular weight

MWCO:

Molecular weight cutoff

LDA:

Linear discriminate analysis

LOO:

Leave one out

AI:

Artificial intelligence

References

  1. Bentwich I. Pharma’s bio-AI revolution. Drug Discov Today. 2023;28: 103515.

    Article  CAS  PubMed  Google Scholar 

  2. Jiang J, Ma X, Ouyang D, Williams RO. Emerging artificial intelligence (AI) technologies used in the development of solid dosage forms. Pharmaceutics. 2022;14:2257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Singh I, Juneja P, Kaur B, Kumar P. Pharmaceutical applications of chemometric techniques. ISRN Anal Chem. 2013;2013:1–13.

    Article  Google Scholar 

  4. Lee LC, Liong CY, Jemain AA. A Contemporary review on data preprocessing (DP) practice strategy in ATR-FTIR spectrum. Chemom Intell Lab Syst. 2017;163:64–75.

    Article  CAS  Google Scholar 

  5. Feelders A, Daniels H, Holsheimer M. Methodological and practical aspects of data mining in the product development process. Inf Manag. 2000;37:271–81.

    Article  Google Scholar 

  6. Yao H, Vancoillie J, D’Hondt M, Wynendaele E, Bracke N, De SB. An analytical quality by design (Aqbd) approach for a L-asparaginase activity method. J Pharm Biomed Anal. 2016;117:232–9.

    Article  CAS  PubMed  Google Scholar 

  7. Rantanen J, Khinast J. The future of pharmaceutical manufacturing sciences. J Pharm Sci. 2015;104:3612–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nasereddin J, Shakib M. Ira: a free and open-source Fourier transform infrared (FTIR) data analysis widget for pharmaceutical applications. Anal Lett. 2023;56:2637–48.

    Article  CAS  Google Scholar 

  9. Biancolillo A, Marini F. Chemometric methods for spectroscopy-based pharmaceutical analysis. Front Chem. 2018;6:1–14.

    Article  Google Scholar 

  10. Syafri S, Jaswir I, Yusof F, Rohman A, Hamidi D. The use Of GC-MS and FTIR spectroscopy coupled with multivariate analysis for the detection of red ginger oil adulteration. Rasayan J Chem. 2022;15:2231–6.

    Article  CAS  Google Scholar 

  11. Beć KB, Grabska J, Huck CW. In silico NIR spectroscopy – A review. Molecular fingerprint, interpretation of calibration models, understanding of matrix effects and instrumental difference. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2022;279:1–18.

  12. Nandiyanto ABD, Oktiani R, Ragadhita R. How to read and interpret FTIR spectroscope of organic material. Indones J Sci Technol. 2019;4:97–118.

    Article  Google Scholar 

  13. Huang T, Wang S, He K. Quality control for fused deposition modeling based additive manufacturing: Current research and future trends. Proc 2015 1st Int Conf Reliab Syst Eng ICRSE. 2015;2015.

  14. Charoo NA, Ali AA. Quality risk management in pharmaceutical development. Drug Dev Ind Pharm. 2013;39:947–60.

    Article  CAS  PubMed  Google Scholar 

  15. Kousiatza C, Karalekas D. In-situ monitoring of strain and temperature distributions during fused deposition modeling process. Mater Des. 2016;97:400–6.

    Article  Google Scholar 

  16. Steffens FE. What is principal components analysis? Nat Biotechnol. 1983;26:303–4.

    Google Scholar 

  17. Alhijjaj M, Nasereddin J, Belton P, Qi S. Impact of processing parameters on the quality of pharmaceutical solid dosage forms produced by fused deposition modeling (FDM). Pharmaceutics. 2019;11:1–21.

    Article  Google Scholar 

  18. Lestari D, Rohman A, Syofyan S, Yuliana ND, Abu Bakar NKB, Hamidi D. Analysis of beef meatballs with rat meat adulteration using Fourier transform infrared (FTIR) spectroscopy in combination with chemometrics. Int J Food Prop. 2022;25:1446–57.

    Article  CAS  Google Scholar 

  19. Baker MJ, Gazi E, Brown MD, Shanks JH, Gardner P, Clarke NW. FTIR-based spectroscopic analysis in the identification of clinically aggressive prostate cancer. Br J Cancer. 2008;99:1859–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nasereddin JM, Wellner N, Alhijjaj M, Belton P, Qi S. Development of a simple mechanical screening method for predicting the feedability of a pharmaceutical FDM 3D printing filament. Pharm Res. 2018;35:150.

    Article  Google Scholar 

  21. Sharifi A. Partial least squares-regression (PLS-regression). In: Chemometrics. 11th Natl Conf Achiev Chem Chem Eng. 2018. pp. 305–8.

  22. Stacey P, Clegg F, Sammon C. Multicomponent measurement of respirable quartz, kaolinite and coal dust using Fourier transform infrared spectroscopy (FTIR): a comparison between partial least squares and principal component regressions. Ann Work Expo Heal. 2022;66:644–55.

    Article  CAS  Google Scholar 

  23. Singh G, Kumar D, Sharma D, Singh M, Kaur S. Q-Absorbance ratio spectrophotometric method for the simultaneous estimation of prednisolone and 5-amino salicylic acid in tablet dosage form. J Appl Pharm Sci. 2012;2:222–6.

    Google Scholar 

  24. Iftikhar SY, Iqbal FM, Hassan W, Nasir B, Sarwar AR. Desirability combined response surface methodology approach for optimization of prednisolone acetate loaded chitosan nanoparticles and in-vitro assessment. Mater Res Express. 2020;7:115004.

  25. Luque-Alcaraz AG, Lizardi-Mendoza J, Goycoolea FM, Higuera-Ciapara I, Argüelles-Monal W. Preparation of chitosan nanoparticles by nanoprecipitation and their ability as a drug nanocarrier. RSC Adv. 2016;6:59250–6.

    Article  ADS  CAS  Google Scholar 

  26. Toplak M, Birarda G, Read S, Sandt C, Rosendahl SM, Vaccari L, et al. Infrared Orange: connecting hyperspectral data with machine learning. Synchrotron Radiat News. 2017;30:40–5.

    Article  ADS  Google Scholar 

  27. Basu B, Aviya KR, Bhattacharya A. Development and characterization of mouth dissolving tablets of prednisolone. J Pharm Investig. 2014;44:79–102.

    Article  CAS  Google Scholar 

  28. Madni A, Kashif PM, Nazir I, Tahir N, Rehman M, Khan MI, et al. Drug-polymer interaction studies of cytarabine loaded chitosan nanoparticles. J Chem Soc Pakistan. 2017;39:1045–54.

    CAS  Google Scholar 

  29. Lin J, Huang J, Chen J, Lin Z, Ou Y, Yao L, et al. Low cytotoxic D-mannitol isolated from the industrial wastewater of Agaricus bisporus. J Food Nutr Res. 2016;4:610–4.

    CAS  Google Scholar 

  30. Zaid Alkilani A, Hamed R, Abdo H, Swellmeen L, Basheer HA, Wahdan W, et al. Formulation and evaluation of azithromycin-loaded niosomal gel: optimization, in vitro studies, rheological characterization, and cytotoxicity study. ACS omega. 2022;7:39782–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Queiroz MF, Melo KRT, Sabry DA, Sassaki GL, Rocha HAO. Does the use of chitosan contribute to oxalate kidney stone formation? Mar Drugs. 2014;13:141–58.

    Article  PubMed Central  Google Scholar 

  32. O’Sullivan B, Glennon B. Application of in situ FBRM and ATR-FTIR to the monitoring of the polymorphic transformation of D-mannitol. Org Process Res Dev. 2005;9:884–9.

    Article  Google Scholar 

  33. Sharma VK, Kalonia DS. Effect of vacuum drying on protein-mannitol interactions: the physical state of mannitol and protein structure in the dried state. AAPS PharmSciTech. 2004;5:58–69.

    PubMed  PubMed Central  Google Scholar 

  34. Oktay AN, Ilbasmis-Tamer S, Han S, Uludag O, Celebi N. Preparation and in vitro / in vivo evaluation of flurbiprofen nanosuspension-based gel for dermal application. Eur J Pharm Sci. 2020;155: 105548.

    Article  CAS  PubMed  Google Scholar 

  35. Chen YD, Liang ZY, Cen YY, Zhang H, Han MG, Tian YQ, et al. Development Of oral dispersible tablets containing prednisolone nanoparticles for the management of pediatric asthma. Drug Des Devel Ther. 2015;9:5815–25.

    PubMed  PubMed Central  Google Scholar 

  36. Albuquerque G, Eisemann M, Lehmann D, Theisel H, Magnor M. Improving the visual analysis of high-dimensional datasets using quality measures. In: IEEE Conference on Visual Analytics Science and Technology (VAST). 2010. pp. 19–26. https://doi.org/10.1109/VAST.2010.5652433

  37. Angelini M, Blasilli G, Lenti S, Palleschi A, Santucci G. Towards enhancing RadViz analysis and interpretation. In: 2019 IEEE Vis Conf VIS 2019. Institute of Electrical and Electronics Engineers Inc.; 2019. p. 226–30.

  38. Rubio-Sánchez M, Raya L, Díaz F, Sanchez A. A comparative study between Radviz and star coordinates. IEEE Trans Vis Comput Graph. 2016;22:619–28.

    Article  PubMed  Google Scholar 

  39. Zaid Alkilani A, Nimrawi S, Al-Nemrawi NK, Nasereddin J. Microneedle-assisted transdermal delivery of amlodipine besylate loaded nanoparticles. Drug Dev Ind Pharm. 2022;48:322–32.

    Article  CAS  PubMed  Google Scholar 

  40. Suttiponparnit K, Jiang J, Sahu M, Suvachittanont S, Charinpanitkul T, Biswas P. Role Of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties. Nanoscale Res Lett. 2011;6:1–8.

    Google Scholar 

  41. Hamdallah SI, Zoqlam R, Erfle P, Blyth M, Alkilany AM, Dietzel A, et al. Microfluidics for pharmaceutical nanoparticle fabrication: The truth and the myth. Int J Pharm. 2020;584:119408.

  42. Godugu C, Doddapaneni R, Patel AR, Singh R, Mercer R, Singh M. Novel gefitinib formulation with improved oral bioavailability in treatment of A431 skin carcinoma. Pharm Res. 2016;33:137–54.

    Article  CAS  PubMed  Google Scholar 

  43. Palanisamy M, Khanam J. Solid dispersion of prednisolone: solid state characterization and improvement of dissolution profile. Drug Dev Ind Pharm. 2011;37:373–86.

    Article  CAS  PubMed  Google Scholar 

  44. Marsac PJ, Shamblin SL, Taylor LS. Theoretical and practical approaches for prediction of drug-polymer miscibility and solubility. Pharm Res. 2006;23:2417–26.

    Article  CAS  PubMed  Google Scholar 

  45. El-Gindy A, Hadad GM. Chemometrics in pharmaceutical analysis: an introduction, review, and future perspectives. J AOAC Int. 2012;95:609–23.

    Article  CAS  PubMed  Google Scholar 

  46. Wold S, Sjöström M, Eriksson L. PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst. 2001;58:109–30.

    Article  CAS  Google Scholar 

  47. Baker MJ, Trevisan J, Bassan P, Bhargava R, Butler HJ, Dorling KM, et al. Using Fourier transform IR spectroscopy to analyze biological materials. Nat Protoc. 2014;9:1771–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang B, Nasereddin J, McDonagh T, von Zeppelin D, Gleadall A, Alqahtani F, et al. Effects of porosity on drug release kinetics of swellable and erodible porous pharmaceutical solid dosage forms fabricated by hot melt droplet deposition 3D printing. Int J Pharm. 2021;604:120626.

  49. Leyk E, Wesolowski M. Interactions between paracetamol and hypromellose in the solid state. Front Pharmacol. 2019;10:14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Garg U, Chauhan S, Nagaich U, Jain N. Current advances in chitosan nanoparticles based drug delivery and targeting. Tabriz Univ Med Sci. 2019;7:113–7.

    Google Scholar 

  51. Jisha KDMS. Chitosan nanoparticles preparation and applications. Environ Chem Lett. 2018;16:101–12.

    Article  Google Scholar 

  52. Morgen M, Bloom C, Beyerinck R, Bello A, Song W, Wilkinson K, et al. Polymeric nanoparticles for increased oral bioavailability and rapid absorption using celecoxib as a model of a low-solubility, high-permeability drug. Pharm Res. 2012;29:427–40.

    Article  CAS  PubMed  Google Scholar 

  53. Alkilani AZ, Nasereddin J, Hamed R, Nimrawi S, Hussein G, Abo-Zour H, et al. Beneath the skin: a review of current trends and future prospects of transdermal drug delivery systems. Pharmaceutics. 2022;14:1–35.

    Article  Google Scholar 

  54. Jermain SV, Brough C, Williams RO. Amorphous solid dispersions and nanocrystal technologies for poorly water-soluble drug delivery – an update. Int J Pharm. 2018;535:379–92.

    Article  CAS  PubMed  Google Scholar 

  55. Gigliobianco MR, Casadidio C, Censi R, Di Martino P. Nanocrystals of poorly soluble drugs: drug bioavailability and physicochemical stability. Pharmaceutics. 2018;10:134.

  56. Herdiana Y, Wathoni N, Shamsuddin S, Muchtaridi M. Drug release study of the chitosan-based nanoparticles. Heliyon. 2022;8:E08674.

    Article  CAS  PubMed  Google Scholar 

  57. Liang J, Yan H, Puligundla P, Gao X, Zhou Y, Wan X. Applications of chitosan nanoparticles to enhance absorption and bioavailability of tea polyphenols: a review. Food Hydrocoll. 2017;69:286–92.

    Article  CAS  Google Scholar 

  58. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. Pubchem In 2021: new data content and improved web interfaces. Nucleic Acids Res. 2021;49:D1388–95.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This project was graciously funded by the Zarqa University Deanship of Scientific Research (#15, Damascus Highway, Zarqa, 13110, Jordan).

Author information

Authors and Affiliations

Authors

Contributions

JN: primary supervision, experimental procedures, writing of the manuscript. RAW: experimental procedure. AZK: supervision, manuscript review. AAK: NANOPARTICLE Characterization, manuscript review. MN: nanoparticle characterization, manuscript review. WAD: analytical method validation.

Corresponding author

Correspondence to Jehad Nasereddin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1768 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasereddin, J., Al Wadi, R., Zaid Al-Kilani, A. et al. The Use of Data Mining for Obtaining Deeper Insights into the Fabrication of Prednisolone-Loaded Chitosan Nanoparticles. AAPS PharmSciTech 25, 38 (2024). https://doi.org/10.1208/s12249-024-02756-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-024-02756-3

Keywords

Navigation