Skip to main content

Advertisement

Log in

Design and Evaluation of a Dual-Sensitive In Situ Gel for the Controlled Release of Pranoprofen

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Currently, the marketed ophthalmic preparations of pranoprofen (PF) are mainly eye drops, but due to the special clearance mechanism of the eye and corneal reflex, the contact time between the drug and the focal site is short, most of the drug is lost, and the bioavailability is less than 5%. In the present study, an in situ gel eye drop containing no bacteriostatic agent and sensitive to temperature and ions was designed for delivery of PF. It was demonstrated to meet the criteria for ophthalmic preparations by characterization such as appearance content sterility. Ocular irritation tests showed a favorable safety profile. In vivo ocular retention time experiments showed that the ocular retention time of the pranoprofen gel was 4.41 times longer than that of commercially available drops (Pranopulin®), and the nasal tear excretion of the pranoprofen gel was lower than that of Pranopulin®, which suggests that the drug loss was reduced relative to that of the drops. The efficacy of the pranoprofen gel against tincture of cayenne pepper-induced corneal and conjunctival inflammation was examined using Pranopulin® as a control and in conjunction with inflammation scores, H&E slice results, and levels of IL-1β, IL-6, and TNF-α. The results showed that pranoprofen gel and Pranololin® had significant efficacy in the treatment of corneal and conjunctival inflammation, and the anti-inflammatory effect of pranoprofen gel was superior to that of Pranololin®. This study provides a new option for the treatment of corneal and conjunctival inflammation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article [and/or its supplementary materials].

References

  1. Jiawen Y, Gaoyong T, Jingxin T, et al. A comprehensive review on contact lens for ophthalmic drug delivery. 2018;10;281:97-118. https://doi.org/10.1016/j.jconrel.2018.05.020.

  2. Chaudhari P, Ghate VM, Lewis SA, et al. Next-generation contact lenses: towards bioresponsive drug delivery and smart technologies in ocular therapeutics. Eur J Pharm Biopharm. 2021;161:80–99. https://doi.org/10.1016/j.ejpb.2021.02.007.

    Article  CAS  PubMed  Google Scholar 

  3. Gupta H, Aqil M, Khar RK, Ali A, Bhatnagar A, Mittal G, et al. An alternative in situ gel-formulation of levofloxacin eye drops for prolong ocular retention. J Pharm Bioallied Sci. 2015;7(1):9–14. https://doi.org/10.4103/0975-7406.149810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Epps SJ, Boldison J, Stimpson ML, Khera TK, Lait PJP, Copland DA, et al. Re-programming immunosurveillance in persistent non-infectious ocular inflammation. Prog Retin Eye Res. 2018;65:93–106. https://doi.org/10.1016/j.preteyeres.2018.03.001.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dang DH, Riaz KM, Karamichos D, et al. Treatment of non-infectious corneal injury: review of diagnostic agents, therapeutic medications, and future targets. Drugs. 2022;82(2):145–67. https://doi.org/10.1007/s40265-021-01660-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Harada Y, Hiyama T, Kiuchi Y, et al. Methotrexate effectively controls ocular inflammation in Japanese patients with non-infectious uveitis. Front Med (Lausanne). 2021;8:732427. https://doi.org/10.3389/fmed.2021.732427.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rivera PA, Gupta A, Kombo N, et al. Treatment of non-infectious retinal vasculitis. Ther Adv Ophthalmol. 2023;15:25158414231152760. https://doi.org/10.1177/25158414231152761.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Xu T, Stewart KM, Wang X, Liu K, Xie M, Ryu JK, et al. Metabolic control of TH17 and induced Treg cell balance by an epigenetic mechanism. Nature. 2017;548(7666):228–33. https://doi.org/10.1038/nature23475.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  9. Lu H, Guan Y, Su Y, Nan N, Yuan Y, et al. Effect of sodium hyaluronate eye drops combined with tobramycin, dexamethasone and pranoprofen eye drops in the treatment of dry eye after phacoemulsification. Indian J Ophthalmol. 2022;70(12):4319–24. https://doi.org/10.4103/ijo.IJO_1652_22.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Semeraro F, Gambicordi E, Cancarini A, Morescalchi F, Costagliola C, Russo A, et al. Treatment of exudative age-related macular degeneration with aflibercept combined with pranoprofen eye drops or nutraceutical support with omega-3: a randomized trial. Br J Clin Pharmacol. 2019;85(5):908–13. https://doi.org/10.1111/bcp.13871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Luo Y, Yang L, Feng P, Qiu H, Wu X, Lu S, et al. Pranoprofen nanoparticles with poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide) as the matrix toward improving ocular anti-inflammation. Front Bioeng Biotechnol. 2020;8:581621. https://doi.org/10.3389/fbioe.2020.581621.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Szalai B, Jójárt-Laczkovich O, Kovács A, Berkó S, Balogh GT, Katona G, et al. Design and optimization of in situ gelling mucoadhesive eye drops containing dexamethasone. Gels. 2022;8(9). https://doi.org/10.3390/gels8090561.

  13. Balasubramaniam B, Chong YJ, Azzopardi M, Logeswaran A, Denniston AK, et al. Topical anti-inflammatory agents for non-infectious uveitis: current treatment and perspectives. J Inflamm Res. 2022;15:6439–51. https://doi.org/10.2147/jir.S288294.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kang-Mieler JJ, Rudeen KM, Liu W, Mieler WF. Advances in ocular drug delivery systems. Eye (Lond). 2020;34(8):1371–9. https://doi.org/10.1038/s41433-020-0809-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Koutsoviti M, Siamidi A, Pavlou P, Vlachou M. Recent advances in the excipients used for modified ocular drug delivery. Materials (Basel). 2021;14(15). https://doi.org/10.3390/ma14154290.

  16. Chauhan A, Fitzhenry L, Serro AP. Recent advances in ophthalmic drug delivery. pharmaceutics. 2022;14(10). https://doi.org/10.3390/pharmaceutics14102075.

  17. Yu Y, Cheng Y, Tong J, Zhang L, Wei Y, Tian M. Recent advances in thermo-sensitive hydrogels for drug delivery. J Mater Chem B. 2021;9(13):2979–92. https://doi.org/10.1039/d0tb02877k.

    Article  CAS  PubMed  Google Scholar 

  18. Jin L, Li X, Chen X, Chen X, Liu Y, Xu H, et al. A study on puerarin in situ gel eye drops: formulation optimization and pharmacokinetics on rabbits by microdialysis. Int J Pharm. 2023;642:123176. https://doi.org/10.1016/j.ijpharm.2023.123176.

    Article  CAS  PubMed  Google Scholar 

  19. Kouchak M, Mahmoodzadeh M, Farrahi F. Designing of a pH-triggered Carbopol®/HPMC in situ gel for ocular delivery of dorzolamide HCl: in vitro, in vivo, and ex vivo evaluation. AAPS PharmSciTech. 2019;20(5):210. https://doi.org/10.1208/s12249-019-1431-y.

    Article  CAS  PubMed  Google Scholar 

  20. Pandey M, Choudhury H, Binti Abd Aziz A, Bhattamisra SK, Gorain B, et al. Potential of stimuli-responsive in situ gel system for sustained ocular drug delivery: recent progress and contemporary research. Polymers (Basel). 2021;13(8). https://doi.org/10.3390/polym13081340.

  21. Gupta S, Vyas SP. Carbopol/chitosan based pH triggered in situ gelling system for ocular delivery of timolol maleate. Sci Pharm. 2010;78(4):959–76. https://doi.org/10.3797/scipharm.1001-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ni X, Guo Q, Zou Y, Xuan Y, Mohammad IS, Ding Q, et al. Preparation and characterization of bear bile-loaded pH sensitive in-situ gel eye drops for ocular drug delivery. Iran J Basic Med Sci. 2020;23(7):922–9. https://doi.org/10.22038/ijbms.2020.45386.10562.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Agrawal AK, Das M, Jain S. In situ gel systems as ‘smart’ carriers for sustained ocular drug delivery. Expert Opin Drug Deliv. 2012;9(4):383–402. https://doi.org/10.1517/17425247.2012.665367.

    Article  CAS  PubMed  Google Scholar 

  24. Shen T, Yang Z. In vivo and in vitro evaluation of in situ gel formulation of pemirolast potassium in allergic conjunctivitis. Drug Des Devel Ther. 2021;15:2099–107. https://doi.org/10.2147/dddt.S308448.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Maddiboyina B, Jhawat V, Desu PK, Gandhi S, Nakkala RK, Singh S. Formulation and evaluation of thermosensitive flurbiprofen in situ nano gel for the ocular delivery. J Biomater Sci Polym Ed. 2021;32(12):1584–97. https://doi.org/10.1080/09205063.2021.1927460.

    Article  CAS  PubMed  Google Scholar 

  26. Gupta H, Jain S, Mathur R, Mishra P, Mishra AK, Velpandian T, et al. Sustained ocular drug delivery from a temperature and pH triggered novel in situ gel system. Drug Deliv. 2007;14(8):507–15. https://doi.org/10.1080/10717540701606426.

    Article  CAS  PubMed  Google Scholar 

  27. Chowhan A, Giri TK. Polysaccharide as renewable responsive biopolymer for in situ gel in the delivery of drug through ocular route. Int J Biol Macromol. 2020;150:559–72. https://doi.org/10.1016/j.ijbiomac.2020.02.097.

    Article  CAS  PubMed  Google Scholar 

  28. Rawat PS, Ravi PR, Mir SI, Khan MS, Kathuria H, Katnapally P, et al. Design, characterization and pharmacokinetic-pharmacodynamic evaluation of poloxamer and kappa-carrageenan-based dual-responsive in situ gel of nebivolol for treatment of open-angle glaucoma. Pharmaceutics. 2023;15(2). https://doi.org/10.3390/pharmaceutics15020405.

  29. Noreen S, Ghumman SA, Batool F, Ijaz B, Basharat M, Noureen S, et al. Terminalia arjuna gum/alginate in situ gel system with prolonged retention time for ophthalmic drug delivery. Int J Biol Macromol. 2020;152:1056–67. https://doi.org/10.1016/j.ijbiomac.2019.10.193.

    Article  CAS  PubMed  Google Scholar 

  30. Alsaidan OA, Zafar A, Yasir M, Alzarea SI, Alqinyah M, Khalid M, et al. Development of ciprofloxacin-loaded bilosomes in-situ gel for ocular delivery: optimization, in-vitro characterization, ex-vivo permeation and antimicrobial study. Gels. 2022;8(11). https://doi.org/10.3390/gels8110687.

  31. Yoon HY, Chang IH, Goo YT, Kim CH, Kang TH, Kim SY, et al. Intravesical delivery of rapamycin via folate-modified liposomes dispersed in thermo-reversible hydrogel. Int J Nanomedicine. 2019;14:6249–68. https://doi.org/10.2147/ijn.S216432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sarfraz M, Qamar S, Rehman MU, Tahir MA, Ijaz M, Ahsan A, et al. Nano-formulation based intravesical drug delivery systems: an overview of versatile approaches to improve urinary bladder diseases. Pharmaceutics. 2022;14(9). https://doi.org/10.3390/pharmaceutics14091909.

  33. Bai L, Lei F, Luo R, Fei Q, Zheng Z, He N, et al. Development of a thermosensitive in-situ gel formulations of vancomycin hydrochloride: design, preparation, in vitro and in vivo evaluation. J Pharm Sci. 2022;111(9):2552–61. https://doi.org/10.1016/j.xphs.2022.04.011.

    Article  CAS  PubMed  Google Scholar 

  34. Gugleva V, Titeva S, Ermenlieva N, Tsibranska S, Tcholakova S, Rangelov S, et al. Development and evaluation of doxycycline niosomal thermoresponsive in situ gel for ophthalmic delivery. Int J Pharm. 2020;591:120010. https://doi.org/10.1016/j.ijpharm.2020.120010.

    Article  CAS  PubMed  Google Scholar 

  35. Irimia T, Dinu-Pîrvu CE, Ghica MV, Lupuleasa D, Muntean DL, Udeanu DI, et al. Chitosan-based in situ gels for ocular delivery of therapeutics: a state-of-the-art review. Mar Drugs. 2018;16(10). https://doi.org/10.3390/md16100373.

  36. Samiun WS, Ashari SE, Salim N, Ahmad S. Optimization of processing parameters of nanoemulsion containing aripiprazole using response surface methodology. Int J Nanomedicine. 2020;15:1585–94. https://doi.org/10.2147/ijn.S198914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Espinosa-Andrews H, Páez-Hernández G. Optimization of ultrasonication curcumin-hydroxylated lecithin nanoemulsions using response surface methodology. J Food Sci Technol. 2020;57(2):549–56. https://doi.org/10.1007/s13197-019-04086-w.

    Article  CAS  PubMed  Google Scholar 

  38. Woertz C, Preis M, Breitkreutz J, Kleinebudde P. Assessment of test methods evaluating mucoadhesive polymers and dosage forms: an overview. Eur J Pharm Biopharm. 2013;85(3 Pt B):843–53. https://doi.org/10.1016/j.ejpb.2013.06.023.

    Article  CAS  PubMed  Google Scholar 

  39. Kiss EL, Berkó S, Gácsi A, Kovács A, Katona G, Soós J, et al. Development and characterization of potential ocular mucoadhesive nano lipid carriers using full factorial design. Pharmaceutics. 2020;12(7). https://doi.org/10.3390/pharmaceutics12070682.

  40. Chen F, Yin G, Liao X, Yang Y, Huang Z, Gu J, et al. Preparation, characterization and in vitro release properties of morphine-loaded PLLA-PEG-PLLA microparticles via solution enhanced dispersion by supercritical fluids. J Mater Sci Mater Med. 2013;24(7):1693–705. https://doi.org/10.1007/s10856-013-4926-1.

    Article  CAS  PubMed  Google Scholar 

  41. Draize JH, Woodard G, Calvery HO. Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. Jpharmacolexpther. 1944;82(3):105–7.

    Google Scholar 

  42. Jain K, Kumar RS, Sood S, Dhyanandhan G. Betaxolol hydrochloride loaded chitosan nanoparticles for ocular delivery and their anti-glaucoma efficacy. Curr Drug Deliv. 2013;10(5):493–9. https://doi.org/10.2174/1567201811310050001.

    Article  CAS  PubMed  Google Scholar 

  43. Guo Y, Gu R, Yu J, Lei B, Gan D, Xu G. Synthetic glucocorticoid-induced leucine zipper peptide inhibits lipopolysaccharide-induced ocular inflammation in rats. Ophthalmic Res. 2020;63(4):434–42. https://doi.org/10.1159/000505003.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang J, Li Y, Fang X, Zhou D, Wang Y, Chen M. TPGS-g-PLGA/Pluronic F68 mixed micelles for tanshinone IIA delivery in cancer therapy. Int J Pharm. 2014;476(1–2):185–98. https://doi.org/10.1016/j.ijpharm.2014.09.017.

    Article  CAS  PubMed  Google Scholar 

  45. Laracuente ML, Yu MH, McHugh KJ. Zero-order drug delivery: state of the art and future prospects. J Control Release. 2020;327:834–56. https://doi.org/10.1016/j.jconrel.2020.09.020.

    Article  CAS  PubMed  Google Scholar 

  46. Eldesouky LM, El-Moslemany RM, Ramadan AA, Morsi MH, Khalafallah NM. Cyclosporine Lipid nanocapsules as thermoresponsive gel for dry eye management: Promising corneal mucoadhesion, biodistribution and preclinical efficacy in rabbits. Pharmaceutics. 2021;13(3):360. https://doi.org/10.3390/pharmaceutics13030360.

  47. Kraus E, Mandl H, Stöhr M. Examination methods for the evaluation of muscle and connective tissue portions in transverse sections of eye muscle. Comparison of electronic picture analysis and visual evaluation. Ber Zusammenkunft Dtsch Ophthalmol Ges. 1975;73:673–9.

    Google Scholar 

  48. Xu H, Liu Y, Jin L, Chen X, Chen X, Wang Q, et al. Preparation and characterization of ion-sensitive brimonidine tartrate in situ gel for ocular delivery. Pharmaceuticals (Basel). 2023;16(1). https://doi.org/10.3390/ph16010090.

  49. He W, Guo X, Feng M, Mao N. In vitro and in vivo studies on ocular vitamin A palmitate cationic liposomal in situ gels. Int J Pharm. 2013;458(2):305–14.

    Article  CAS  PubMed  Google Scholar 

  50. Alfonso SA, Fawley JD, Alexa LuX. Conjunctivitis. Prim Care. 2015;42(3):325–45. https://doi.org/10.1016/j.pop.2015.05.001.

    Article  PubMed  Google Scholar 

  51. Gueudry J, Muraine M. Anterior uveitis. J Fr Ophtalmol. 2018;41(1):e11–21. https://doi.org/10.1016/j.jfo.2017.11.003.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Scientific Research Project of the Liaoning Province Education Department (2020LJC16).

Author information

Authors and Affiliations

Authors

Contributions

Hongyu Yang: data curation, formal analysis, investigation, writing—original draft, writing—review and editing. Shuihan Ding: formal analysis, investigation, visualization. Donghui Fan: data curation, formal analysis, investigation. Ziwei Zhu: formal analysis, investigation. Yingzhen Fan: data curation, investigation. Ji Li: writing—review and editing, visualization. Dongkai Wang: conceptualization, project administration, supervision, writing—review and editing.

Corresponding authors

Correspondence to Ji Li or Dongkai Wang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Ding, S., Fan, D. et al. Design and Evaluation of a Dual-Sensitive In Situ Gel for the Controlled Release of Pranoprofen. AAPS PharmSciTech 25, 35 (2024). https://doi.org/10.1208/s12249-024-02748-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-024-02748-3

Keywords

Navigation