Skip to main content

Advertisement

Log in

Enhanced Oral Bioavailability of Progesterone in Bilosome Formulation: Fabrication, Statistical Optimization, and Pharmacokinetic Study

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Progesterone, a female sex steroid hormone, is highly lipophilic, leading to poor oral bioavailability. This study aimed to develop a progesterone bilosome system to enhance its oral bioavailability and retain it longer in the body. Progesterone vesicles were formulated with bile salts by thin film hydration method to prevent enzymatic and bile acid degradation. The Box-Behnken experimental design was used to statistically optimize progesterone bilosomes by checking the effect of phosphatidylcholine, cholesterol, and sodium deoxycholate on vesicle size, zeta potential, and entrapment efficiency. The optimum batch showed 239.5 nm vesicle size, -28.2 mV zeta potential and 84.08% entrapment efficiency, respectively, which were significantly affected by phosphatidylcholine and cholesterol concentration. The successful incorporation of progesterone in the system was evident from ATR-FTIR analysis that revealed no sharp progesterone peaks in bilosomes. TEM analysis confirmed the spherical structure and uniform bilosome vesicles. Furthermore, the in vitro drug release of progesterone bilosomes revealed a sustained pattern exhibiting 90% drug release in 48 h. The pharmacokinetic study in female ovariectomized Wistar rats confirmed the 4.287- and 9.75-fold enhanced oral bioavailability of the progesterone bilosomes than marketed capsules and progesterone API, respectively. Therefore, progesterone bilosome formulation can be further explored for improved oral administration in chronic treatments.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  1. Gupta DR, Prabhakar B, Wairkar S. Non-oral routes, novel formulations and devices of contraceptives: an update. J Control Release. 2022;345:798–810.

    Article  CAS  PubMed  Google Scholar 

  2. Goletiani NV, Keith DR, Gorsky SJ. Progesterone: review of safety for clinical studies. Exp Clin Psychopharmacol. 2007;15(5):427.

    Article  CAS  PubMed  Google Scholar 

  3. Conneely OM, Mulac-Jericevic B, Lydon JP. Progesterone-dependent regulation of female reproductive activity by two distinct progesterone receptor isoforms. Steroids. 2003;68:771–8.

    Article  CAS  PubMed  Google Scholar 

  4. Levine JE, Chappell PE, Schneider JS, Sleiter NC, Szabo M. Progesterone receptors as neuroendocrine integrators. Front Neuroendocrinol. 2001;22:69–106.

    Article  CAS  PubMed  Google Scholar 

  5. Bales MJ, Timpe EM. Respiratory stimulant use in chronic obstructive pulmonary disease. Ann Pharmacother. 2004;38:1722–5.

    Article  PubMed  Google Scholar 

  6. Schumacher M, Guennoun R, Ghoumari A, Massaad C, Robert F, El-Etr M, Akwa Y, Rajkowski K, Baulieu EE. Novel perspectives for progesterone in hormone replacement therapy, with special reference to the nervous system. Endocr Rev. 2007;28(4):387–439.

    Article  CAS  PubMed  Google Scholar 

  7. Boelig RC, Medicine MF, Della CL, Sciences R, Ashoush S, Mckenna D, et al. Oral progesterone for the prevention of recurrent preterm birth: systematic review and metaanalysis. Am J Obstet Gynecol. 2020;1:50–62.

    Google Scholar 

  8. Boelig RC, Della Corte L, Ashoush S, McKenna D, Saccone G, Rajaram S, Berghella V. Oral progesterone for the prevention of recurrent preterm birth: systematic review and metaanalysis. Am J Obstet Gynecol MFM. 2019;1(1):50–62.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jain SK, Singh R, Sahu B. Development of a liposome based contraceptive system for intravaginal administration of progesterone. Drug Dev Ind Pharm. 1997;23:827–30.

    Article  CAS  Google Scholar 

  10. Coombes Z, Yadav V, McCoubrey LE, Freire C, Basit AW, Conlan RS, et al. Progestogens are metabolized by the gut microbiota: implications for colonic drug delivery. Pharmaceutics. 2020;12:760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Freag MS, Saleh WM, Abdallah OY. Self-assembled phospholipid-based phytosomal nanocarriers as promising platforms for improving oral bioavailability of the anticancer celastrol. Int J Pharm. 2018;535:18–26.

    Article  CAS  PubMed  Google Scholar 

  12. Potluri P, Betageri GV. Mixed-micellar proliposomal systems for enhanced oral delivery of progesterone. Drug Deliv J Deliv Target Ther Agents. 2006;13:227–32.

    CAS  Google Scholar 

  13. Patil N, Maheshwari R, Wairkar S. Advances in progesterone delivery systems: still work in progress? Int J Pharm. 2023;643: 123250.

    Article  CAS  PubMed  Google Scholar 

  14. Arafat M, Kirchhoefer C, Mikov M, Sarfraz M, Löbenberg R. Nanosized liposomes containing bile salt: a vesicular nanocarrier for enhancing oral bioavailability of BCS class III drug. J Pharm Pharm Sci. 2017;20:305–18.

    Article  CAS  PubMed  Google Scholar 

  15. Yang H, Liu Z, Song Y, Hu C. Hyaluronic acid-functionalized bilosomes for targeted delivery of tripterine to inflamed area with enhancive therapy on arthritis. Drug Deliv. 2019;26:820–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kumar GP, Rajeshwarrao P. Nonionic surfactant vesicular systems for effective drug delivery—an overview. Acta Pharm Sin B. 2011;1:208–19.

    Article  Google Scholar 

  17. Wilkhu JS, McNeil SE, Anderson DE, Perrie Y. Characterization and optimization of bilosomes for oral vaccine delivery. J Drug Target. 2013;21:291–9.

    Article  CAS  PubMed  Google Scholar 

  18. Pavlović N, Goločorbin-Kon S, Ðanić M, Stanimirov B, Al-Salami H, Stankov K, Mikov M. Bile acids and their derivatives as potential modifiers of drug release and pharmacokinetic profiles. Front Pharmacol. 2018;8(9):1283.

    Article  Google Scholar 

  19. Aburahma MH. Bile salts-containing vesicles: promising pharmaceutical carriers for oral delivery of poorly water-soluble drugs and peptide/protein-based therapeutics or vaccines. Drug Deliv. 2014;23:1847–67.

    PubMed  Google Scholar 

  20. Tavaniotou A, Smitz J, Bourgain C, Devroey P. Comparison between different routes of progesterone administration as luteal phase support in infertility treatments. Hum Reprod Update. 2000;6(2):139–48.

    Article  CAS  PubMed  Google Scholar 

  21. Cometti B. Pharmaceutical and clinical development of a novel progesterone formulation. Acta Obstet Gynecol Scand. 2015;94:28–37.

    Article  CAS  PubMed  Google Scholar 

  22. Chen Y, Lu Y, Chen J, Lai J, Sun J, Hu F, et al. Enhanced bioavailability of the poorly water-soluble drug fenofibrate by using liposomes containing bile salt. Int J Pharm. 2009;376:153–60.

    Article  CAS  PubMed  ADS  Google Scholar 

  23. Mohsen AM, Salama A, Kassem AA. Development of acetazolamide loaded bilosomes for improved ocular delivery: preparation, characterization and in vivo evaluation. J Drug Deliv Sci Technol. 2020;59: 101910.

    Article  CAS  Google Scholar 

  24. Elnaggar YSR. Multifaceted applications of bile salts in pharmacy: an emphasis on nanomedicine. Int J Nanomedicine. 2015;10:3955–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ameeduzzafar Ali J, Bhatnagar A, Kumar N, Ali A. Chitosan nanoparticles amplify the ocular hypotensive effect of cateolol in rabbits. Int J Biol Macromol. 2014;65:479–91.

    Article  CAS  PubMed  Google Scholar 

  26. Islam N, Zahoor AF, Syed HK, Iqbal MS, Khan IU, Abbas G, et al. Improvement of solubility and dissolution of ebastine by fabricating phosphatidylcholine/ bile salt bilosomes. Pak J Pharm Sci. 2020;33:2301–6.

    CAS  PubMed  Google Scholar 

  27. Djiogue S, Djiyou Djeuda AB, Seke Etet PF, Ketcha Wanda GJM, Djikem Tadah RN, Njamen D. Memory and exploratory behavior impairment in ovariectomized Wistar rats. Behav Brain Funct. 2018;14:1–8.

    Article  Google Scholar 

  28. Mannino CA, South SM, Inturrisi CE, Quinones-Jenab V. Pharmacokinetics and effects of 17β-estradiol and progesterone implants in ovariectomized rats. J Pain. 2005;6(12):809–16.

    Article  CAS  PubMed  Google Scholar 

  29. Brustolin EV, Skare TL, Nassif PAN, Biondo-Simões M de LP, Prestes MA, Ozono LM, et al. Wound healing under the effect of iodine cadexomer in rats. Acta Cir Bras. 2012;27:874–9.

    Article  PubMed  Google Scholar 

  30. Wang M, Liu M, Xie T, Zhang BF, Gao XL. Chitosan-modified cholesterol-free liposomes for improving the oral bioavailability of progesterone. Colloids Surf B Biointerfaces. 2017;159:580–5.

    Article  CAS  PubMed  Google Scholar 

  31. Pavlović N, Goločorbin-Kon S, Danić M, Stanimirov B, Al-Salami H, Stankov K, et al. Bile acids and their derivatives as potential modifiers of drug release and pharmacokinetic profiles. Front Pharmacol. 2018;9:1–23.

    Article  Google Scholar 

  32. Shukla A, Mishra V, Kesharwani P. Bilosomes in the context of oral immunization: development, challenges and opportunities. Drug Discov Today. 2016;21:888–99.

    Article  CAS  PubMed  Google Scholar 

  33. Abdel-moneum R, Abdel-Rashid RS. Bile salt stabilized nanovesicles as a promising drug delivery technology: a general overview and future perspectives. J Drug Deliv Sci Technol. 2022;79: 104057.

    Article  Google Scholar 

  34. Saifi Z, Rizwanullah M, Mir SR, Amin S. Bilosomes nanocarriers for improved oral bioavailability of acyclovir: a complete characterization through in vitro, ex-vivo and in vivo assessment. J Drug Deliv Sci Technol. 2020;57: 101634.

    Article  Google Scholar 

  35. Nayak D, Rathnanand M, Tippavajhala VK. Unlocking the potential of bilosomes and modified bilosomes: a comprehensive journey into advanced drug delivery trends. AAPS PharmSciTech. 2023;24(8):238.

    Article  CAS  PubMed  Google Scholar 

  36. Waglewska E, Pucek-Kaczmarek A, Bazylińska U. Novel surface-modified bilosomes as functional and biocompatible nanocarriers of hybrid compounds. Nanomaterials. 2020;10(12):2472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Patel D, Vora A, Wairkar S, Yc M. Design of experiment-based LC-MS/MS method development for simultaneous estimation of nateglinide and metformin hydrochloride in rat plasma. J Mass Spectrom. 2021;56(11): e4789.

    Article  CAS  PubMed  Google Scholar 

  38. Babadi D, Dadashzadeh S, Osouli M, Daryabari MS, Haeri A. Nanoformulation strategies for improving intestinal permeability of drugs: a more precise look at permeability assessment methods and pharmacokinetic properties changes. J Control Release. 2020;321:669–709.

    Article  CAS  PubMed  Google Scholar 

  39. Shaker S, Gardouh A, Ghorab M. Factors affecting liposomes particle size prepared by ethanol injection method. Res Pharm Sci. 2017;12:346–52.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Karal MAS, Mokta NA, Levadny V, Belaya M, Ahmed M, Ahamed MK, et al. Effects of cholesterol on the size distribution and bending modulus of lipid vesicles. PLoS ONE. 2022;17:1–24.

    Article  Google Scholar 

  41. Al-Mahallawi AM, Abdelbary AA, Aburahma MH. Investigating the potential of employing bilosomes as a novel vesicular carrier for transdermal delivery of tenoxicam. Int J Pharm. 2015;485:329–40.

    Article  CAS  PubMed  Google Scholar 

  42. Khafagy ES, Almutairy BK, Abu Lila AS. Tailoring of novel bile salt stabilized vesicles for enhanced transdermal delivery of simvastatin: a new therapeutic approach against inflammation. Polymers. 2023;15(3):677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ahmed S, Kassem MA, Sayed S. Bilosomes as promising nanovesicular carriers for improved transdermal delivery: construction, in vitro optimization, ex vivo permeation and in vivo evaluation. Int J Nanomedicine. 2020;15:9783–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wilkhu JS, McNeil SE, Anderson DE, Perrie Y. Characterization and optimization of bilosomes for oral vaccine delivery. J Drug Target. 2013;21(3):291–9.

    Article  CAS  PubMed  Google Scholar 

  45. Mohsen AM, Asfour MH, Salama AA. Improved hepatoprotective activity of silymarin via encapsulation in the novel vesicular nanosystem bilosomes. Drug Dev Ind Pharm. 2017;43(12):2043–54.

    Article  CAS  PubMed  Google Scholar 

  46. Were LM, Bruce BD, Davidson PM, Weiss J. Size, stability, and entrapment efficiency of phospholipid nanocapsules containing polypeptide antimicrobials. J Agric Food Chem. 2003;51:8073–9.

    Article  CAS  PubMed  Google Scholar 

  47. Shankar VK, Police A, Pandey P, Cuny ZG, Repka MA, Doerksen RJ, Murthy SN. Optimization of sulfobutyl-ether-β-cyclodextrin levels in oral formulations to enhance progesterone bioavailability. Int J Pharm. 2021;1(596): 120212.

    Article  Google Scholar 

  48. Bose A, Wong TW, Singh N. Formulation development and optimization of sustained release matrix tablet of Itopride HCl by response surface methodology and its evaluation of release kinetics. Saudi Pharm J. 2013;21:201–13.

    Article  PubMed  Google Scholar 

  49. Ahmad J, Singhal M, Amin S, Rizwanullah M, Akhter S, Amjad Kamal M, Haider N, Midoux P, Pichon C. Bile salt stabilized vesicles (bilosomes): a novel nano-pharmaceutical design for oral delivery of proteins and peptides. Curr Pharm Des. 2017;23(11):1575–88.

    Article  CAS  PubMed  Google Scholar 

  50. Wang X, Luo Z, Xiao Z. Preparation, characterization, and thermal stability of β-cyclodextrin/soybean lecithin inclusion complex. Carbohydr Polym. 2014;101:1027–32.

    Article  CAS  PubMed  Google Scholar 

  51. Guan P, Lu Y, Qi J, et al. Enhanced oral bioavailability of cyclosporine A by liposomes containing a bile salt. Int J Nanomed. 2011;6:965–74.

    CAS  Google Scholar 

  52. Kunde SS, Wairkar S. Folic acid anchored urchin-like raloxifene nanoparticles for receptor targeting in breast cancer: synthesis, optimisation and in vitro biological evaluation. Int J Pharm. 2022;623: 121926.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to La Chandra Pharma Lab, Ahmedabad, India, for a gift sample of Progesterone. The authors thank VAV Life Sciences Pvt. Ltd, India, for providing a gift sample of Leciva S75.

Author information

Authors and Affiliations

Authors

Contributions

RM has done the data collection and drafting of the manuscript. LB was involved in methodology and data analysis. SW conceptualized the manuscript, data analysis, and approval of the final manuscript.

Corresponding author

Correspondence to Sarika Wairkar.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1571 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maheshwari, R., Bhatt, L. & Wairkar, S. Enhanced Oral Bioavailability of Progesterone in Bilosome Formulation: Fabrication, Statistical Optimization, and Pharmacokinetic Study. AAPS PharmSciTech 25, 29 (2024). https://doi.org/10.1208/s12249-024-02747-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-024-02747-4

Keywords

Navigation