Skip to main content
Log in

Changes in Tablet Color Due to Light Irradiation: Photodegradation of the Coating Polymer, Hypromellose, by Titanium Dioxide

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The color of the tablets and capsules produced by pharmaceutical companies is important from the perspectives of product branding and counterfeiting. According to some studies, light can change tablet color during storage. In this study, tablets comprising amlodipine besylate (AB), a well-known light-sensitive drug, were coated with commonly used coating materials and exposed to light. Compared to the tablets that were not exposed to light, the color of those exposed to light changed over time. In fact, a faster and more pronounced color change was observed in the tablets exposed to light; however, the amount of AB did not decrease significantly in these tablets. The coating materials and their amounts were varied to clarify the materials involved in the color change. Based on the results, titanium dioxide and hypromellose may be involved in the color change process. As titanium dioxide is a photocatalyst, it may induce or promote chemical changes in hypromellose upon light irradiation. Overall, care should be exercised during selection of the coating polymer because titanium dioxide may promote photodegradation of the coatings while protecting the tablet’s active ingredient from light.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. de Craen AJM, Roos PJ, de Vries AL, Kleijnen J. Effect of colour of drugs: systematic review of perceived effect of drugs and of their effectiveness. Br Med J. 1996;313:1624–6.

    Article  Google Scholar 

  2. Amawi RM, Murdoch MJ. Understanding color associations and their effects on expectations of drugs’ efficacies. Pharmacy. 2022;10:82.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wan X, Woods AT, Salgado-Montejo A, Velasco C, Spence C. Assessing the expectations associated with pharmaceutical pill colour and shape. Food Qual Prefer. 2015;45:171–82.

    Article  Google Scholar 

  4. Naeve SH. Heart pills are red, viagra is blue - when does pill color become functional? An analysis of utilitarian and aesthetic functionality and their unintended side effects in the pharmaceutical. Santa Clara High Tech L J. 2010;27:299–332.

    Google Scholar 

  5. Lechner A, Simonoff JS, Harrington L. Color-emotion associations in the pharmaceutical industry: understanding universal and local themes. Color Res App. 2012;37:59–71.

    Article  Google Scholar 

  6. https://www.purplepill.com/. Accessed 27 August 2023.

  7. Stegemann S. Colored capsules − a contribution to drug safety industry. Pharm Ind. 2005;67:1088–95.

    Google Scholar 

  8. Wortz RB. Color stability of ascorbic acid tablets measured by light reflectance. J Pharm Sci. 1967;56:1169–73.

    Article  CAS  PubMed  Google Scholar 

  9. Stark G, Fawcett JP, Tucker IG, Weatherall IL. Instrumental evaluation of color of solid dosage forms during stability testing. Int J Pharm. 1996;143:93–100.

    Article  CAS  Google Scholar 

  10. Rhee YS, Park CW, Shin YS, Kam SH, Lee KH, Park ES. Application of instrumental evaluation of color for the pre-formulation and formulation of rabeprazole. Int J Pharm. 2008;350:122–9.

    Article  CAS  PubMed  Google Scholar 

  11. Yamazaki N, Taya K, Shimokawa K, Ishii F. The most appropriate storage method in unit-dose package and correlation between color change and decomposition rate of aspirin tablets. Int J Pharm. 2010;396:105–10.

    Article  CAS  PubMed  Google Scholar 

  12. Yamazaki N, Taya K, Shimokawa K, Ishii F. Corrigendum to “The most appropriate storage method in unit-dose package and correlation between color change and decomposition rate of aspirin tablets.” Int J Pharm. 2011;404:325–30.

    Article  CAS  PubMed  Google Scholar 

  13. Berberich J, Dee KH, Hayauchi Y, Pörtner C. A new method to determine discoloration kinetics of uncoated white tablets occurring during stability testing - an application of instrumental color measurement in the development pharmaceutics. Int J Pharm. 2002;234:55–66.

    Article  CAS  PubMed  Google Scholar 

  14. Hetrick EM, Vannoy J, Montgomery LL, Pack BW. Integrating tristimulus colorimetry into pharmaceutical development for color selection and physical appearance control: a quality-by-design approach. J Pharm Sci. 2013;102:2608–21.

    Article  CAS  PubMed  Google Scholar 

  15. Wirth M. Instrumental color measurement: a method for judging the appearance of tablets. J Pharm Sci. 1991;80:1177–9.

    Article  CAS  PubMed  Google Scholar 

  16. Rodomonte AL, Gaudiano MC, Antoniella E, Lucente D, Crusco V, Bartolomei M, Bertocchi P, Manna L, Valvo L, Alhaique F, Muleri N. Counterfeit drugs detection by measurement of tablets and secondary packaging colour. J Pharm Biomed Anal. 2010;53:215–20.

    Article  CAS  PubMed  Google Scholar 

  17. Hagbani TA, Veronin MA, Nutan MT, Nazzal S. Can the surface color of pharmaceutical tablets be used as a unique product identifier? J Drug Deliv Sci Technol. 2017;37:141–6.

    Article  Google Scholar 

  18. International Conference on Harmonisation. ICH Harmonised Tripartite Guideline: Specifications: test procedures and acceptance criteria for new drug substances and new drug products: chemical substances, Q6A. Step 4, 6 October 1999. https://www.pmda.go.jp/files/000156754.pdf. Accessed 1 June 2023.

  19. Ragno G, Garofalo A, Vetuschi C. Photodegradation monitoring of amlodipine by derivative spectrophotometry. J Pharm Biomed Anal. 2002;27:19–24.

    Article  CAS  PubMed  Google Scholar 

  20. Ragno G, Cione E, Garofalo A, Genchi G, Ioele G, Risoli A, Spagnoletta A. Design and monitoring of photostability systems for amlodipine dosage forms. Int J Pharm. 2003;265:125–32.

    Article  CAS  PubMed  Google Scholar 

  21. Fasani E, Albini A, Gemme S. Mechanism of the photochemical degradation of amlodipine. Int J Pharm. 2008;352:197–201.

    Article  CAS  PubMed  Google Scholar 

  22. Kawabe Y, Nakamura H, Hino E, Suzuki S. Photochemical stabilities of some dihydropyridine calcium-channel blockers in powdered pharmaceutical tablets. J Pharm Biomed. 2008;47:618–24.

    Article  CAS  Google Scholar 

  23. Jang DJ, Jeong EJ, Lee HM, Kim BC, Lim SJ, Kim CK. Improvement of bioavailability and photostability of amlodipine using redispersible dry emulsion. Eur J Pharm Sci. 2006;28:405–11.

    Article  CAS  PubMed  Google Scholar 

  24. Jakimska1 A, Śliwka-Kaszyńska MS, Nagórski P, Namieśnik J, Kot-Wasik A. phototransformation of amlodipine: deegradation kinetics and identification of its photoproducts. PLoS One. 2014;9:e109206.

  25. Kawabata K, Iwata M, Kawaguchi M, Kaneko M, Gennai M, Akimoto S, Inagaki M, Segawa K, Nishi H. Photostabilities of amlodipine OD tablets in different dosage forms. Chromatography. 2022;43:79–85.

    Article  CAS  Google Scholar 

  26. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;238:37–8.

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T. Light-induced amphiphilic surfaces. Nature. 1997;388:431–2.

    Article  ADS  CAS  Google Scholar 

  28. Fujishima A, Rao TN, Tryk DA. Titanium dioxide photocatalysis. J Photochem Photobiol C. 2000;1:1–21.

    Article  CAS  Google Scholar 

  29. Nakata K, Fujishima A. TiO2 photocatalysis: design and applications. J Photochem Photobiol C. 2012;13:169–89.

    Article  CAS  Google Scholar 

  30. Armaković SJ, Savanović MM, Armaković S. Titanium dioxide as the most used photocatalyst for water purification: an overview. Catalysts. 2023;13:26.

    Article  Google Scholar 

  31. Sabin F, Türk T, Vogler A. Photo-oxidation of organic compounds in the presence of titanium dioxide: determination of the efficiency. J Photochem Photobiol A. 1992;63:99–106.

    Article  CAS  Google Scholar 

  32. Braun JH. Titanium dioxide’s contribution to the durability of paint films. Prog Org Coat. 1987;15:249–60.

    Article  CAS  Google Scholar 

  33. Day RE. The role of titanium dioxide pigments in the degradation and stabilisation of polymers in the plasties industry. Polym Degrad Stab. 1990;29:73–92.

    Article  CAS  Google Scholar 

  34. Katayama M. Surface treatment of TiO2 and its function. J Surf Finish Soc Jpn. 2019;70:494–9.

    Article  CAS  Google Scholar 

  35. Jutta K. Oelgemöller M, Robertson S, Glass BD. Photostability of sunscreens. J Photochem Photobiol C. 2012;13:91–110.

    Google Scholar 

  36. Lewicka ZA, Yu WW, Oliva BL, Contreras EQ, Colvin VL. Photochemical behavior of nanoscale TiO2 and ZnO sunscreen ingredients. J Photochem Photobiol A. 2013;263:24–33.

    Article  CAS  Google Scholar 

  37. Siddiquey IA, Ukaji E, Furusawa T, Sato M, Suzuki N. The effects of organic surface treatment by methacryloxypropyltrimethoxysilane on the photostability of TiO2. Mater Chem Phys. 2007;105:162–8.

    Article  CAS  Google Scholar 

  38. Kim NR, Kim Y, Yun JM, Jeong SK, Lee S, Lee BZ, Shim J. Surface coating of titanium dioxide nanoparticles with a polymerizable chelating agent and its physicochemical property. ACS Omega. 2023;8:18743–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kakinoki K, Yamane K, Teraoka R, Otsuka M, Matsuda Y. Effect of relative humidity on the photocatalytic activity of titanium dioxide and photostability of famotidine. J Pharm Sci. 2004;93:582–9.

    Article  CAS  PubMed  Google Scholar 

  40. Kakinoki K, Yamane K, Igarashi M, Yamamoto M, Teraoka R, Matsuda Y. Evaluation of titanium dioxide as a pharmaceutical excipient for preformulation of a photo-labile drug: effect of physicochemical properties on the photostability of solid-state nisoldipine. Chem Pharm Bull. 2005;53:811–5.

    Article  CAS  Google Scholar 

  41. Marothu VK, Nellutla A, Gorrepati M, Majeti S, Mamidala SK. Forced degradation studies, and effect of surfactants and titanium dioxide on the photostability of paliperidone by HPLC. Ann Pharm Fr. 2015;73:289–96.

    Article  CAS  PubMed  Google Scholar 

  42. Wang KH, Hsieh YH, Lin CH, Chan CY. The study of the photocatalytic degradation kinetics for dichloroethylene in vapor phase. Chemosphere. 1999;39:1371–84.

    Article  ADS  CAS  Google Scholar 

  43. Aman W, Thoma K. How to photostabilize molsidomine tablets. J Pharm Sci. 2004;93:1860–6.

    Article  CAS  PubMed  Google Scholar 

  44. Béchard SR, Quraishi O, Kwong E. Film coating: effect of titanium dioxide concentration and film thickness on the photostability of nifedipine. Int J Pharm. 1992;87:133–9.

    Article  Google Scholar 

  45. Odani N, Mohan S, Kato E, Feng H, Li Y, Hossain MN, Drennen III James K, JK, Anderson CA,. Determining the effect of photodegradation on film coated nifedipine tablets with terahertz based coating thickness measurements. Eur J Pharm Biopharm. 2019;145(35–41):38.

    Google Scholar 

  46. Chen Y, Sun Z, Yang Y, Ke Q. Heterogeneous photocatalytic oxidation of polyvinyl alcohol in water. J Photochem Photobiol C. 2001;142:85–9.

    Article  CAS  Google Scholar 

  47. Maggi L, Segale L, Machiste EO, Buttafava A, Faucitano A, Conte U. Chemical and physical stability of hydroxypropylmethylcellulose matrices containing diltiazem hydrochloride after gamma irradiation. J Pharm Sci. 2003;92:131–41.

    Article  CAS  PubMed  Google Scholar 

  48. Maggi L, Machiste EO, Fasani E, Albini A, Segale L, Conte U. Photostability of extended-release matrix formulations. Eur J Pharm Biopharm. 2003;55:99–105.

    Article  CAS  PubMed  Google Scholar 

  49. Ye B, Li Y, Chen Z, Wu QY, Wang WL, Wang T, Hu HY. Degradation of polyvinyl alcohol (PVA) by UV/chlorine oxidation: redical roles, influencing factors, and degradation pathway. Water Res. 2017;124:381–7.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang J, Zhou Z, Xiao B, Zhou C, Jiang Z, Liang Y, Sun Z, Xiong J, Chen G, Zhu H, Wang S. Visible-light photocatalytic degradation of water-soluble polyvinyl alcohol in aqueous solution by Cu2O@TiO2: optimization of conditions, mechanisms and toxicity analysis. J Environ Manage. 2023;341: 118054.

    Article  CAS  PubMed  Google Scholar 

  51. Shibata M, Maeda M. Microscopic observation of chalking TiO2 particles doped photocatalytic polymer sheets. Kobunshi Ronbunshu. 2017;74:616–20.

    Article  CAS  Google Scholar 

  52. Bley O, Siepmann J, Bodmeier R. Characterization of moisture-protective polymer coatings using differential scanning calorimetry and dynamic vapor sorption. J Pharm Sci. 2009;98:651–64.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by Towa Pharmaceutical Co., Ltd and Kobe Pharmaceutical University.

Author information

Authors and Affiliations

Authors

Contributions

Y. Matsushima contributed to the study’s conception, the AB assay, the analysis of the decomposition product, SEM image acquisition, and preparation of the first draft of the manuscript. M. Hattori prepared and then coated the tablets. A. Tanaka and T. Furubayashi contributed to the experiment on light irradiation using the photostability chamber. T. Sakane revised and enhanced the language of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yuki Matsushima.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsushima, Y., Hattori, M., Tanaka, A. et al. Changes in Tablet Color Due to Light Irradiation: Photodegradation of the Coating Polymer, Hypromellose, by Titanium Dioxide. AAPS PharmSciTech 25, 26 (2024). https://doi.org/10.1208/s12249-024-02732-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-024-02732-x

Keywords

Navigation