Skip to main content

Advertisement

Log in

Development and Characterization of Modified Chitosan Lipopolyplex for an Effective siRNA Delivery

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Cytotoxicity, speedy degradation, and limited cellular absorption are the foremost features influencing the successful delivery of RNAs. Chitosan (Cs) is a polymer that offers an advantage due to its bio-compatibility and biodegradable nature, making it an ideal polycationic vector for delivering siRNA. In this study, chitosan has been modified with arginine in order to increase its encapsulation of siRNA and improve cellular absorption. It was discovered that arginine and guanidino moieties could transport through membranes of cells and play an important part in membrane permeability. FTIR and 13C NMR were used to characterize the complex. These chitosan-arginine (CsAr) siRNA complexes are further encapsulated in anionic DPPC/cholesterol liposomes to combine the effects of liposome-chitosan-arginine complexes called lipopolyplexes (LCAr). Formed LCAr were investigated for their lipid/CsAr-siRNA ratios, size, zeta-potential, heparin, and serum RNase stability by agarose gel retardation, and cell uptake efficiency compared to their “parent” polyplexes. Results revealed complete lipidation of CsAr-siRNA polyplexes at lipid mass ratio 10 resulting in lipopolyplexes in the 120 to 230nm range. Polyplex entrapped ~70% of siRNA, whereas lipidation increases siRNA encapsulation to ~95%. Developed LCAr showed ~4 times less hemolytic potential as compared to the parent polyplexes at the highest siRNA dose. The CsAr-siRNA and its lipid-coated form showed enhanced cellular association as compared to the marketed Lipofectamine 2000 proving its effectiveness in siRNA delivery. CsAr-liposome conjugation is simple and safe, and serves as a robust carrier for gene transport in physiological situations without compromising transfection efficacy.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Shahryari A, Saghaeian Jazi M, Mohammadi S, Razavi Nikoo H, Nazari Z, Hosseini ES, Burtscher I, Mowla SJ, Lickert H. Development and clinical translation of approved gene therapy products for genetic disorders. Front Genet. 2019;10:868. https://doi.org/10.3389/fgene.2019.00868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hu B, Zhong L, Weng Y, Peng L, Huang Y, Zhao Y, Liang X-J. Therapeutic siRNA: state of the art. Signal Transduct Target Ther. 2020;5:101. https://doi.org/10.1038/s41392-020-0207-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Feng L, Li SK, Liu H, Liu CY, Lasance K, Haque F, Shu D, Guo P. Ocular delivery of pRNA nanoparticles: distribution and clearance after subconjunctival injection. Pharm Res. 2014;31:1046–58. https://doi.org/10.1007/s11095-013-1226-x.

    Article  CAS  PubMed  Google Scholar 

  4. Hamoudi MC, Henry E, Zerrouk N, Scherman D, Arnaud P, Deprez E, Escriou V. Enhancement of siRNA lipid-based vector stability and siRNA integrity in human serum with addition of anionic polymer adjuvant. J Drug Deliv Sci Technol. 2015;26:1–9. https://doi.org/10.1016/j.jddst.2015.01.001.

    Article  CAS  Google Scholar 

  5. Arruda DC, Gonzalez IJ, Finet S, Cordova L, Trichet V, Andrade GF, Hoffmann C, Bigey P, de Almeida Macedo WA, da Silva Cunha A, Malachias de Souza A, Escriou V. Modifying internal organization and surface morphology of siRNA lipoplexes by sodium alginate addition for efficient siRNA delivery. J Colloid Interface Sci. 2019;540:342–53. https://doi.org/10.1016/j.jcis.2019.01.043.

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Ribeiro MCS, de Miranda MC, Cunha PS, Andrade GF, Fulgêncio GO, Gomes DA, Fialho SL, Pittella F, Charrueau C, Escriou V, Silva-Cunha A. Neuroprotective effect of siRNA entrapped in hyaluronic acid-coated lipoplexes by intravitreal administration. Pharmaceutics. 2021;13:845. https://doi.org/10.3390/pharmaceutics13060845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chaharband F, Daftarian N, Kanavi MR, Varshochian R, Hajiramezanali M, Norouzi P, Arefian E, Atyabi F, Dinarvand R. Trimethyl chitosan-hyaluronic acid nano-polyplexes for intravitreal VEGFR-2 siRNA delivery: formulation and in vivo efficacy evaluation. Nanomedicine. 2020;102181. https://doi.org/10.1016/j.nano.2020.102181.

  8. Yao Y, Su Z, Liang Y, Zhang N. pH-Sensitive carboxymethyl chitosan-modified cationic liposomes for sorafenib and siRNA co-delivery. Int J Nanomedicine. 2015;10:6185–97. https://doi.org/10.2147/IJN.S90524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ragelle H, Riva R, Vandermeulen G, Naeye B, Pourcelle V, Le Duff CS, D’Haese C, Nysten B, Braeckmans K, De Smedt SC, Jérôme C, Préat V. Chitosan nanoparticles for siRNA delivery: optimizing formulation to increase stability and efficiency. J Control Release. 2014;176:54–63. https://doi.org/10.1016/j.jconrel.2013.12.026.

    Article  CAS  PubMed  Google Scholar 

  10. Jean M, Alameh M, De Jesus D, Thibault M, Lavertu M, Darras V, Nelea M, Buschmann MD, Merzouki A. Chitosan-based therapeutic nanoparticles for combination gene therapy and gene silencing of in vitro cell lines relevant to type 2 diabetes. Eur J Pharm Sci. 2012;45:138–49. https://doi.org/10.1016/j.ejps.2011.10.029.

    Article  CAS  PubMed  Google Scholar 

  11. Howard KA, Rahbek UL, Liu X, Damgaard CK, Glud SZ, Andersen MØ, Hovgaard MB, Schmitz A, Nyengaard JR, Besenbacher F, Kjems J. RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol Ther. 2006;14:476–84. https://doi.org/10.1016/j.ymthe.2006.04.010.

    Article  CAS  PubMed  Google Scholar 

  12. Mao S, Sun W, Kissel T. Chitosan-based formulations for delivery of DNA and siRNA. Adv Drug Deliv Rev. 2010;62:12–27. https://doi.org/10.1016/j.addr.2009.08.004.

    Article  CAS  PubMed  Google Scholar 

  13. Xu S, Dong M, Liu X, Howard KA, Kjems J, Besenbacher F. Direct force measurements between siRNA and chitosan molecules using force spectroscopy. Biophys J. 2007;93:952–9. https://doi.org/10.1529/biophysj.106.093229.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sato T, Ishii T, Okahata Y. In vitro gene delivery mediated by chitosan. Effect of pH, serum, and molecular mass of chitosan on the transfection efficiency. Biomaterials. 2001;22:2075–80. https://doi.org/10.1016/S0142-9612(00)00385-9.

    Article  CAS  PubMed  Google Scholar 

  15. Singh B, Choi YJ, Park IK, Akaike T, Cho CS. Chemical modification of chitosan with ph-sensitive molecules and specific ligands for efficient DNA transfection and siRNA silencing. J Nanosci Nanotechnol. 2014;14:564–76. https://doi.org/10.1166/jnn.2014.9079.

    Article  CAS  PubMed  Google Scholar 

  16. Heidari R, Khosravian P, Mirzaei SA, Elahian F. siRNA delivery using intelligent chitosan-capped mesoporous silica nanoparticles for overcoming multidrug resistance in malignant carcinoma cells. Sci Rep. 2021;11:20531. https://doi.org/10.1038/s41598-021-00085-0.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sun P, Huang W, Kang L, Jin M, Fan B, Jin H, Wang QM, Gao Z. siRNA-loaded poly(histidine-arginine)6-modified chitosan nanoparticle with enhanced cell-penetrating and endosomal escape capacities for suppressing breast tumor metastasis. Int J Nanomedicine. 2017;12:3221. https://doi.org/10.2147/IJN.S129436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ragelle H, Vandermeulen G, Préat V. Chitosan-based siRNA delivery systems. J Control Release. 2013;172:207–18. https://doi.org/10.1016/j.jconrel.2013.08.005.

    Article  CAS  PubMed  Google Scholar 

  19. Zhou Y, Han S, Liang Z, Zhao M, Liu G, Wu J. Progress in arginine-based gene delivery systems. J Mater Chem B. 2020;8:5564–77. https://doi.org/10.1039/d0tb00498g.

    Article  CAS  PubMed  Google Scholar 

  20. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4:145–60. https://doi.org/10.1038/nrd1632.

    Article  CAS  PubMed  Google Scholar 

  21. Beltrán-Gracia E, López-Camacho A, Higuera-Ciapara I, Velázquez-Fernández JB, Vallejo-Cardona AA. Nanomedicine review: clinical developments in liposomal applications. Cancer Nanotechnol. 2019;10:11. https://doi.org/10.1186/s12645-019-0055-y.

    Article  CAS  Google Scholar 

  22. Rezaee M, Oskuee RK, Nassirli H, Malaekeh-Nikouei B. Progress in the development of lipopolyplexes as efficient non-viral gene delivery systems. J Control Release. 2016;236:1–14. https://doi.org/10.1016/j.jconrel.2016.06.023.

    Article  CAS  PubMed  Google Scholar 

  23. Pinnapireddy SR, Duse L, Strehlow B, Schäfer J, Bakowsky U. Composite liposome-PEI/nucleic acid lipopolyplexes for safe and efficient gene delivery and gene knockdown. Colloids Surf B Biointerfaces. 2017;158:93–101. https://doi.org/10.1016/j.colsurfb.2017.06.022.

    Article  CAS  PubMed  Google Scholar 

  24. Ko YT, Kale A, Hartner WC, Papahadjopoulos-Sternberg B, Torchilin VP. Self-assembling micelle-like nanoparticles based on phospholipid–polyethyleneimine conjugates for systemic gene delivery. J Control Release. 2009;133:132–8. https://doi.org/10.1016/j.jconrel.2008.09.079.

    Article  CAS  PubMed  Google Scholar 

  25. Ewe A, Panchal O, Pinnapireddy SR, Bakowsky U, Przybylski S, Temme A, Aigner A. Liposome-polyethylenimine complexes (DPPC-PEI lipopolyplexes) for therapeutic siRNA delivery in vivo. Nanomedicine. 2017;13:209–18. https://doi.org/10.1016/j.nano.2016.08.005.

    Article  CAS  PubMed  Google Scholar 

  26. Alamelu S, Rao KP. Studies on the carboxymethyl chitosan-containing liposomes for their stability and controlled release of dapsone. J Microencapsul. 1991;8:505–19. https://doi.org/10.3109/02652049109021874.

    Article  CAS  PubMed  Google Scholar 

  27. Guo J, Ping Q, Jiang G, Huang L, Tong Y. Chitosan-coated liposomes: characterization and interaction with leuprolide. Int J Pharm. 2003;260:167–73. https://doi.org/10.1016/s0378-5173(03)00254-0.

    Article  CAS  PubMed  Google Scholar 

  28. Şalva E, Turan SÖ, Eren F, Akbuğa J. The enhancement of gene silencing efficiency with chitosan-coated liposome formulations of siRNAs targeting HIF-1α and VEGF. Int J Pharm. 2015;478:147–54. https://doi.org/10.1016/j.ijpharm.2014.10.065.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang H, Zhu D, Song L, Liu L, Dong X, Liu Z, Leng X. Arginine conjugation affects the endocytic pathways of chitosan/DNA nanoparticles. J Biomed Mater Res A. 2011;98:296–302. https://doi.org/10.1002/jbm.a.33115.

    Article  CAS  PubMed  Google Scholar 

  30. Wang K, Qi Z, Pan S, Zheng S, Wang H, Chang Y, Li H, Xue P, Yang X, Fu C. Preparation, characterization and evaluation of a new film based on chitosan, arginine and gold nanoparticle derivatives for wound-healing efficacy. RSC Adv. 2020;10:20886–99. https://doi.org/10.1039/D0RA03704D.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sutton D, Kim S, Shuai X, Leskov K, Marques JT, Williams BRG, Boothman DA, Gao J. Efficient suppression of secretory clusterin levels by polymer-siRNA nanocomplexes enhances ionizing radiation lethality in human MCF-7 breast cancer cells in vitro. Int J Nanomedicine. 2006;1:155–62. https://doi.org/10.2147/nano.2006.1.2.155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Safari F, Tamaddon AM, Zarghami N, Abolmali S, Akbarzadeh A. Polyelectrolyte complexes of hTERT siRNA and polyethyleneimine: effect of degree of PEG grafting on biological and cellular activity. Artif Cells Nanomed Biotechnol. 2016;44:1561–8. https://doi.org/10.3109/21691401.2015.1064936.

    Article  CAS  PubMed  Google Scholar 

  33. Konishi M, Kawamoto K, Izumikawa M, Kuriyama H, Yamashita T. Gene transfer into guinea pig cochlea using adeno-associated virus vectors. J Gene Med. 2008;10:610–8. https://doi.org/10.1002/jgm.1189.

    Article  CAS  PubMed  Google Scholar 

  34. Khatri N, Baradia D, Vhora I, Rathi M, Misra A. cRGD grafted liposomes containing inorganic nano-precipitate complexed siRNA for intracellular delivery in cancer cells. J Control Release. 2014;182:45–57. https://doi.org/10.1016/j.jconrel.2014.03.003.

    Article  CAS  PubMed  Google Scholar 

  35. Upadhya A, Sangave PC. Hydrophobic and electrostatic interactions between cell penetrating peptides and plasmid DNA are important for stable non-covalent complexation and intracellular delivery. J Pept Sci. 2016;22:647–59. https://doi.org/10.1002/psc.2927.

    Article  CAS  PubMed  Google Scholar 

  36. Hu C, Chiang C-H, Hong P, Yeh M-K. Influence of charge on FITC-BSA-loaded chondroitin sulfate-chitosan nanoparticles upon cell uptake in human Caco-2 cell monolayers. Int J Nanomedicine. 2012;7:4861–72. https://doi.org/10.2147/IJN.S34770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen C-W, Yeh M-K, Shiau C-Y, Chiang C-H, Lu D-W. Efficient downregulation of VEGF in retinal pigment epithelial cells by integrin ligand-labeled liposome-mediated siRNA delivery. Int J Nanomedicine. 2013;8:2613–27. https://doi.org/10.2147/IJN.S39622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Boisguérin P, Deshayes S, Gait MJ, O’Donovan L, Godfrey C, Betts CA, Wood MJA, Lebleu B. Delivery of therapeutic oligonucleotides with cell penetrating peptides. Adv Drug Deliv Rev. 2015;87:52–67. https://doi.org/10.1016/j.addr.2015.02.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zou L, Peng Q, Wang P, Zhou B. Progress in research and application of HIV-1 TAT-derived cell-penetrating peptide. J Membr Biol. 2017;250:115–22. https://doi.org/10.1007/s00232-016-9940-z.

    Article  CAS  PubMed  Google Scholar 

  40. Calnan BJ, Tidor B, Biancalana S, Hudson D, Frankel AD. Arginine-mediated RNA recognition: the arginine fork. Science. 1991;252:1167–71. https://doi.org/10.1126/science.252.5009.1167.

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Liu L, Bai Y, Song C, Zhu D, Song L, Zhang H, Dong X, Leng X. The impact of arginine-modified chitosan–DNA nanoparticles on the function of macrophages. J Nanoparticle Res. 2010;12:1637–44. https://doi.org/10.1007/s11051-009-9722-y.

    Article  ADS  CAS  Google Scholar 

  42. Sakai N, Takeuchi T, Futaki S, Matile S. Direct observation of anion-mediated translocation of fluorescent oligoarginine carriers into and across bulk liquid and anionic bilayer membranes. Chembiochem. 2005;6:114–22. https://doi.org/10.1002/cbic.200400256.

    Article  CAS  PubMed  Google Scholar 

  43. Baghdan E, Pinnapireddy SR, Strehlow B, Engelhardt KH, Schäfer J, Bakowsky U. Lipid coated chitosan-DNA nanoparticles for enhanced gene delivery. Int J Pharm. 2018;535:473–9. https://doi.org/10.1016/j.ijpharm.2017.11.045.

    Article  CAS  PubMed  Google Scholar 

  44. Bertschinger M, Backliwal G, Schertenleib A, Jordan M, Hacker DL, Wurm FM. Disassembly of polyethylenimine-DNA particles in vitro: implications for polyethylenimine-mediated DNA delivery. J Control Release. 2006;116:96–104. https://doi.org/10.1016/J.JCONREL.2006.09.006.

    Article  CAS  PubMed  Google Scholar 

  45. Danielsen S, Maurstad G, Stokke BT. DNA-polycation complexation polyplex stability in the presence of competing polyanions. Biopolymers. 2005;77:86–97. https://doi.org/10.1002/bip.20170.

    Article  CAS  PubMed  Google Scholar 

  46. Supe S, Upadhya A, Tripathi S, Dighe V, Singh K. Liposome-polyethylenimine complexes for the effective delivery of HuR siRNA in the treatment of diabetic retinopathy. Drug Deliv Transl Res. 2023. https://doi.org/10.1007/S13346-022-01281-9.

    Article  PubMed  Google Scholar 

  47. Schäfer J, Sitterberg J, Ehrhardt C, Kumar MNVR, Bakowsky U. A new drug vehicle - lipid coated biodegradable nanoparticles, in: CIMTEC 2008 - Proceedings of the 3rd International Conference on Smart Materials, Structures and Systems - Biomedical Applications of Smart Materials, Nanotechnology and Micro/Nano Engineering, 2008: pp. 148–153. https://doi.org/10.4028/www.scientific.net/AST.57.148.

  48. Kircheis R, Wightman L, Schreiber A, Robitza B, Rössler V, Kursa M, Wagner E. Polyethylenimine/DNA complexes shielded by transferrin target gene expression to tumors after systemic application. Gene Ther. 2001;8:28–40. https://doi.org/10.1038/sj.gt.3301351.

    Article  CAS  PubMed  Google Scholar 

  49. Ewe A, Schaper A, Barnert S, Schubert R, Temme A, Bakowsky U, Aigner A. Storage stability of optimal liposome-polyethylenimine complexes (lipopolyplexes) for DNA or siRNA delivery. Acta Biomater. 2014;10:2663–73. https://doi.org/10.1016/j.actbio.2014.02.037.

    Article  CAS  PubMed  Google Scholar 

  50. Nafee N, Schneider M, Schaefer UF, Lehr C-M. Relevance of the colloidal stability of chitosan/PLGA nanoparticles on their cytotoxicity profile. Int J Pharm. 2009;381:130–9. https://doi.org/10.1016/j.ijpharm.2009.04.049.

    Article  CAS  PubMed  Google Scholar 

  51. Babu A, Muralidharan R, Amreddy N, Mehta M, Munshi A, Ramesh R. Nanoparticles for siRNA-based gene silencing in tumor therapy. IEEE Trans Nanobioscience. 2016;15:849. https://doi.org/10.1109/TNB.2016.2621730.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Shin JS, Abraham SN. Cell biology. Caveolae–not just craters in the cellular landscape. Science. 2001;293:1447–8. https://doi.org/10.1126/science.1061079.

    Article  CAS  PubMed  Google Scholar 

  53. Pelkmans L, Helenius A. Endocytosis via caveolae. Traffic. 2002;3:311–20. https://doi.org/10.1034/j.1600-0854.2002.30501.x.

    Article  CAS  PubMed  Google Scholar 

  54. Kim T, Baek J, Yoon JK, Choi JS, Kim K, Park J. Synthesis and characterization of a novel arginine-grafted dendritic block copolymer for gene delivery and study of its cellular uptake pathway leading to transfection. Bioconjug Chem. 2007;18:309–17. https://doi.org/10.1021/bc0601525.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Science and Engineering Board for funding this research. We thank SVKM’S NMIMS SPPSPTM (Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management) and NIRRH (National Institute for Research in Reproductive and Child Health) for supporting this research work by providing their facilities. The authors are thankful to Dr. Debashish Das from Narayana Nethralaya Foundation in Bangalore, India, for providing ARPE-19 cell lines for this research.

Funding

This research project is a result of funding received through the Early Career Award granted to Dr. Kavita Singh by the Science and Engineering Research Board, a division of the Department of Science and Technology, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

Shibani Supe: examination, tactic, authentication, writing—first draft. Archana Upadhya: conceptualization, examination, methodology, direction. Vikas Dighe: resources, supervision. Kavita Singh: conceptualization, direction, resources, funding acquisition, writing—proofreading and editing.

Corresponding author

Correspondence to Kavita Singh.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Supe, S., Upadhya, A., Dighe, V. et al. Development and Characterization of Modified Chitosan Lipopolyplex for an Effective siRNA Delivery. AAPS PharmSciTech 25, 13 (2024). https://doi.org/10.1208/s12249-023-02728-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02728-z

Keywords

Navigation