Skip to main content

Advertisement

Log in

Design and Evaluation of Ginkgolides Gastric Floating Controlled Release Tablets Based on Solid Supersaturated Self-nanoemulsifying

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Ginkgolides are receptor antagonist of platelet activating factor with great clinical prospect, but its application is limited by its low solubility, short half-life and poor alkaline environment stability. It is difficult to solve these problems with a single drug delivery system. In this study, supersaturated self-nanoemulsifying gastric floating tablets of ginkgolides were developed through the combination of solid supersaturated self-nanoemulsifying drug delivery system (solid S-SNEDDS) and gastric retentive floating drug delivery system (GFDDS) to solve these problems of ginkgolides. Solid S-SNEDDS was prepared by D-optimal mixture design, normalization method and single factor experiment. The properties of solid-S-SNEDDS were studied by TEM, PXRD, FT-IR, SEM and in vitro drug release profile. Then, the optimal formulation of stomach floating tablet was obtained through single factor experiment and center composite design, followed by the study of in vitro release, model and mechanism of release, in vitro buoyancy and kinetics of erosion and swelling. PXRD and FT-IR showed that the drug in solid S-SNEDDS existed in an amorphous manner and formed hydrogen bond with excipients. The results showed that the cumulative release of GA and GB in the optimal tablets was 96.12% and 92.57% higher than the simple tablets within 12 h. The release mechanism of the tablet was skeleton erosion and drug diffusion. In 12 h, the optimal tablets can float stably in vitro and release the drug at a constant rate, with a cumulative release of more than 80%. In summary, the combination of SNEDDS and GFDDS is a promising means to solve the problems of ginkgolides.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Maerz S, Liu CH, Guo W, Zhu YZ. Anti-ischaemic effects of bilobalide on neonatal rat cardiomyocytes and the involvement of the platelet-activating factor receptor. Biosci Rep. 2011;31(5):439–47.

    Article  PubMed  Google Scholar 

  2. Braquet P. The ginkgolides: potent platelet-activating factor antagonists isolated from Ginkgo biloba L.: chemistry, pharmacology and clinical applications. J Chin Integr Med. 1987;12(7):643.

    Google Scholar 

  3. Li Y, Xu C, Wang H, Liu X, Jiang L, Liang S, et al. Systems pharmacology reveals the multi-level synergetic mechanism of action of Ginkgo biloba L. leaves for cardiomyopathy treatment. J Ethnopharmacol. 2021;264:113279.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang H, Luo YP, Cao ZY, Zhang XZ, Cao L, Wang ZZ, et al. Effect of compatibility of ginkgolide A, ginkgolide B and ginkgolide K. Chin J Chinese Mater Med. 2018;43(7):1410–5.

    Google Scholar 

  5. Hao Y, Dong W. Ginkgolides A and B improve cardiac function in aged rats with ischemia / reperfusion injury. J Qiqihar Med College. 2017;38(16):1863–5.

    Google Scholar 

  6. Wagner H, Ulrich-Merzenich G. Synergy research: approaching a new generation of phytopharmaceuticals. Phytomedicine. 2009;16(2–3):97–110.

    Article  CAS  PubMed  Google Scholar 

  7. Chu X, Ci X, He J, Wei M, Yang X, Cao Q, et al. A novel anti-inflammatory role for ginkgolide B in asthma via inhibition of the ERK/MAPK signaling pathway. Molecules. 2011;16(9):7634–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xie C, Jiang J, Liu J, Yuan G, Zhao Z. Ginkgolide B attenuates collagen-induced rheumatoid arthritis and regulates fibroblast-like synoviocytes-mediated apoptosis and inflammation. Ann Transl Med. 2020;8(22):1497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gachowska M, Szlasa W, Saczko J, Kulbacka J. Neuroregulatory role of ginkgolides. Mol Biol Rep. 2021;48(7):5689–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhu PC, Tong Q, Zhuang Z, Wang ZH, Deng LH, Zheng GQ, et al. Ginkgolide B for myocardial ischemia/reperfusion injury: a preclinical systematic review and meta-analysis. Front Physiol. 2019;10:1292.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Liu Y, Liu W, Xiong S, Luo J, Li Y, Zhao Y, et al. Highly stabilized nanocrystals delivering Ginkgolide B in protecting against the Parkinson’s disease. Int J Pharm. 2020;577: 119053.

    Article  CAS  PubMed  Google Scholar 

  12. Liu Y, Ding S, Luan Y, Zhu Z, Cai Y, Liu Y. Ginkgo biloba extracts inhibit post-ischemic LTP through attenuating EPSCs in rat hippocampus. Metab Brain Dis. 2021;36(8):2299–311.

    Article  PubMed  Google Scholar 

  13. Pietri S, Maurelli E, Drieu K, Culcasi M. Cardioprotective and anti-oxidant effects of the terpenoid constituents of Ginkgo biloba extract (EGb 761). J Mol Cell Cardiol. 1997;29(2):733–42.

    Article  CAS  PubMed  Google Scholar 

  14. Zekri O, Boudeville P, Genay P, Perly B, Braquet P, Jouenne P, et al. Ionization constants of ginkgolide B in aqueous solution. Anal Chem. 1996;68(15):2598–604.

    Article  CAS  PubMed  Google Scholar 

  15. Ma L, Zhu L, Peng J, Xu S, Zhao Y, Shi J, et al. Pharmacokinetics of ginkgolide B-lyophilized nanoparticles after intravenous injection in rats using liquid chromatography-tandem mass spectrometry. Rapid Commun Mass Spectrom. 2023;37(6): e9465.

    Article  CAS  PubMed  Google Scholar 

  16. Study on ginkgolides PELGE nanoparticles [Internet]. China National Knowledge Infrastructure. 2008 [cited 2023 Oct 11]. Available from: https://kns.cnki.net/kcms2/article/abstract?v=-93ivAxQXRq6koTx81gx4Lekq7cRxxAbhOyoJIfvfB8jORVH5F2F184PPlsLPPA-US2Gd8kEzikf00SmmnI5c6CDGhhY-55iA1RlDQwfdg7QgYaVw6o70cymGowyEI35mNOs56D-R7YTAfcgIViOpw==&uniplatform=NZKPT&language=CHS.

  17. Rossi R, Basilico F, Rossoni G, Riva A, Morazzoni P, Mauri PL. Liquid chromatography/atmospheric pressure chemical ionization ion trap mass spectrometry of bilobalide in plasma and brain of rats after oral administration of its phospholipidic complex. J Pharm Biomed Anal. 2009;50(2):224–7.

    Article  CAS  PubMed  Google Scholar 

  18. Zhao Y, Xiong S, Liu P, Liu W, Wang Q, Liu Y, et al. Polymeric nanoparticles-based brain delivery with improved therapeutic efficacy of ginkgolide B in Parkinson’s disease. Int J Nanomed. 2020;15:10453–67.

    Article  Google Scholar 

  19. Li Y, Zhang M, Li S, Zhang L, Kim J, Qiu Q, et al. Selective ischemic-hemisphere targeting Ginkgolide B liposomes with improved solubility and therapeutic efficacy for cerebral ischemia-reperfusion injury. Asian J Pharm Sci. 2023;18(2): 100783.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang P, Cao X, Chu Y, Wang P. Ginkgolides-loaded soybean phospholipid-stabilized nanosuspension with improved storage stability and in vivo bioavailability. Colloids Surf B Biointerfaces. 2019;181:910–7.

    Article  CAS  PubMed  Google Scholar 

  21. Wang S, Wen HY, Li PF, Cui MS, Sun WL, Wang HY, et al. Formulation and evaluation of gastric-floating controlled release tablets of Ginkgolides. J Drug Deliv Sci Technol. 2019;51:7–17.

    Article  CAS  Google Scholar 

  22. Chatterjee B, HamedAlmurisi S, Ahmed Mahdi Dukhan A, Mandal UK, Sengupta P. Controversies with self-emulsifying drug delivery system from pharmacokinetic point of view. Drug Deliv. 2016;23(9):3639–52.

    Article  CAS  PubMed  Google Scholar 

  23. Nipun TS, Ashraful Islam SM. SEDDS of gliclazide: preparation and characterization by in-vitro, ex-vivo and in-vivo techniques. Saudi Pharm J. 2014;22(4):343–8.

    Article  PubMed  Google Scholar 

  24. Vithani K, Jannin V, Pouton CW, Boyd BJ. Colloidal aspects of dispersion and digestion of self-dispersing lipid-based formulations for poorly water-soluble drugs. Adv Drug Deliv Rev. 2019;142:16–34.

    Article  CAS  PubMed  Google Scholar 

  25. Li Q, Zhai W, Jiang Q, Huang R, Liu L, Dai J, et al. Curcumin-piperine mixtures in self-microemulsifying drug delivery system for ulcerative colitis therapy. Int J Pharm. 2015;490(1–2):22–31.

    Article  CAS  PubMed  Google Scholar 

  26. Dokania S, Joshi AK. Self-microemulsifying drug delivery system (SMEDDS)—challenges and road ahead. Drug Deliv. 2015;22(6):675–90.

    Article  CAS  PubMed  Google Scholar 

  27. Xu S, Dai WG. Drug precipitation inhibitors in supersaturable formulations. Int J Pharm. 2013;453(1):36–43.

    Article  CAS  PubMed  Google Scholar 

  28. Balakrishnan P, Lee BJ, Oh DH, Kim JO, Lee YI, Kim DD, et al. Enhanced oral bioavailability of Coenzyme Q10 by self-emulsifying drug delivery systems. Int J Pharm. 2009;374(1–2):66–72.

    Article  CAS  PubMed  Google Scholar 

  29. Awasthi R, Kulkarni GT. Decades of research in drug targeting to the upper gastrointestinal tract using gastroretention technologies: where do we stand? Drug Deliv. 2016;23(2):378–94.

    Article  CAS  PubMed  Google Scholar 

  30. Fu J, Yin H, Yu X, Xie C, Jiang H, Jin Y, et al. Combination of 3D printing technologies and compressed tablets for preparation of riboflavin floating tablet-in-device (TiD) systems. Int J Pharm. 2018;549(1–2):370–9.

    Article  CAS  PubMed  Google Scholar 

  31. Lalloo AK, McConnell EL, Jin L, Elkes R, Seiler C, Wu Y. Decoupling the role of image size and calorie intake on gastric retention of swelling-based gastric retentive formulations: pre-screening in the dog model. Int J Pharm. 2012;431(1–2):90–100.

    Article  CAS  PubMed  Google Scholar 

  32. Gokbulut E, Vural I, Asikoglu M, Ozdemir N. Floating drug delivery system of itraconazole: Formulation, in vitro and in vivo studies. J Drug Deliv Sci Technol. 2019;49:491–501.

    Article  CAS  Google Scholar 

  33. Pawar VK, Kansal S, Garg G, Awasthi R, Singodia D, Kulkarni GT. Gastroretentive dosage forms: a review with special emphasis on floating drug delivery systems. Drug Deliv. 2011;18(2):97–110.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang Y, Zhang XT, Zhang Q, Wang B, Zhang T. Formulation development and evaluation of gastroretentive floating beads with Brucea javanica oil using ionotropic gelation technology. Chin J Nat Med. 2018;16(4):293–301.

    Article  CAS  PubMed  Google Scholar 

  35. Qin C, Wu M, Xu S, Wang X, Shi W, Dong Y, et al. Design and optimization of gastro-floating sustained-release tablet of pregabalin: in vitro and in vivo evaluation. Int J Pharm. 2018;545(1–2):37–44.

    Article  CAS  PubMed  Google Scholar 

  36. Soppimath KS, Kulkarni AR, Rudzinski WE, Aminabhavi TM. Microspheres as floating drug-delivery systems to increase gastric retention of drugs. Drug Metab Rev. 2001;33(2):149–60.

    Article  CAS  PubMed  Google Scholar 

  37. Mesbah MK, Khalifa SI, El-Gindy A, Tawfik KA. HPLC determination of certain flavonoids and terpene lactones in selected Ginkgo biloba L. phytopharmaceuticals. Farmaco. 2005;60(6–7):583–90.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang N, Zhang F, Xu S, Yun KQ, Wu WJ, Pan WS. Formulation and evaluation of luteolin supersaturatable self-nanoemulsifying drug delivery system (S-SNEDDS) for enhanced oral bioavailability. J Drug Deliv Sci Technol. 2020;58:101783. https://doi.org/10.1016/j.jddst.2020.101783.

  39. Tang J, Sun J, Cui F, Zhang T, Liu X, He Z. Self-emulsifying drug delivery systems for improving oral absorption of ginkgo biloba extracts. Drug Deliv. 2008;15(8):477–84.

    Article  CAS  PubMed  Google Scholar 

  40. Son HY, Chae BR, Choi JY, Shin DJ, Goo YT, Lee ES, et al. Optimization of self-microemulsifying drug delivery system for phospholipid complex of telmisartan using D-optimal mixture design. PLoS One. 2018;13(12): e0208339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yahya NA, Wahab RA, Attan N, Hashim SE, Hamid MA, Noor NM, et al. Optimization of oil-in-water nanoemulsion system of ananas comosus peels extract by D-optimal mixture design and its physicochemical properties. J Dispers Sci Technol. 2022;43(2):302–15.

    Article  CAS  Google Scholar 

  42. Alothaid H, Aldughaim MS, Yusuf AO, Yezdani U, Alhazmi A, Habibullah MM, et al. A comprehensive study of the basic formulation of supersaturated self-nanoemulsifying drug delivery systems (SNEDDS) of albendazolum. Drug Deliv. 2021;28(1):2119–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dash RN, Mohammed H, Humaira T, Reddy AV. Solid supersaturatable self-nanoemulsifying drug delivery systems for improved dissolution, absorption and pharmacodynamic effects of glipizide. J Drug Deliv Sci Technol. 2015;28:28–36.

    Article  CAS  Google Scholar 

  44. Madan JR, Patil K, Awasthi R, Dua K. Formulation and evaluation of solid self-microemulsifying drug delivery system for azilsartan medoxomil. Int J Polym Mater Polym Biomater. 2021;70(2):100–16.

    Article  CAS  Google Scholar 

  45. Balakrishnan P, Lee BJ, Oh DH, Kim JO, Hong MJ, Jee JP, et al. Enhanced oral bioavailability of dexibuprofen by a novel solid self-emulsifying drug delivery system (SEDDS). Eur J Pharm Biopharm. 2009;72(3):539–45.

    Article  CAS  PubMed  Google Scholar 

  46. Darade A, Pathak S, Sharma S, Patravale V. Atovaquone oral bioavailability enhancement using electrospraying technology. Eur J Pharm Sci. 2018;111:195–204.

    Article  CAS  PubMed  Google Scholar 

  47. Xie F, Ji S, Cheng Z. In vitro dissolution similarity factor (f2) and in vivo bioequivalence criteria, how and when do they match? Using a BCS class II drug as a simulation example. Eur J Pharm Sci. 2015;66:163–72.

    Article  CAS  PubMed  Google Scholar 

  48. Paixão P, Gouveia LF, Silva N, Morais JA. Evaluation of dissolution profile similarity—comparison between the f(2), the multivariate statistical distance and the f(2) bootstrapping methods. Eur J Pharm Biopharm. 2017;112:67–74.

    Article  PubMed  Google Scholar 

  49. Meka VS, Songa AS, Nali SR, Battu JR, Kolapalli VR. Design and in vitro evaluation of effervescent gastric floating drug delivery systems of propanolol HCl. Invest Clin. 2012;53(1):60–70.

    PubMed  Google Scholar 

  50. Arza RA, Gonugunta CS, Veerareddy PR. Formulation and evaluation of swellable and floating gastroretentive ciprofloxacin hydrochloride tablets. AAPS PharmSciTech. 2009;10(1):220–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Huang ZC, Xu CY, Zhao LX, Wei CL, Wu YY, Qiu J, et al. Preparation, optimization and in vivo study of gastric floating tablets of constunolide and dehydrocostus lactone with ideal therapeutic effect on gastric diseases. J Drug Deliv Sci Technol. 2022;78: 101783.

    Google Scholar 

  52. Janković J, Djekic L, Dobričić V, Primorac M. Evaluation of critical formulation parameters in design and differentiation of self-microemulsifying drug delivery systems (SMEDDSs) for oral delivery of aciclovir. Int J Pharm. 2016;497(1–2):301–11.

    Article  PubMed  Google Scholar 

  53. Kamal MM, Nazzal S. Novel sulforaphane-enabled self-microemulsifying delivery systems (SFN-SMEDDS) of taxanes: formulation development and in vitro cytotoxicity against breast cancer cells. Int J Pharm. 2018;536(1):187–98.

    Article  CAS  PubMed  Google Scholar 

  54. Yi T, Wan J, Xu H, Yang X. A new solid self-microemulsifying formulation prepared by spray-drying to improve the oral bioavailability of poorly water soluble drugs. Eur J Pharm Biopharm. 2008;70(2):439–44.

    Article  CAS  PubMed  Google Scholar 

  55. Cherniakov I, Domb AJ, Hoffman A. Self-nano-emulsifying drug delivery systems: an update of the biopharmaceutical aspects. Expert Opin Drug Deliv. 2015;12:1121–33.

    Article  CAS  PubMed  Google Scholar 

  56. Li ZY, Zeng R, Yang L, Ren XD, Maffucci KG, Qu Y. Development and characterization of PCL electrospun membrane-coated Bletilla striata polysaccharide-based gastroretentive drug delivery system. Aaps Pharmscitech. 2020;21(2):66.

    Article  CAS  PubMed  Google Scholar 

  57. Gao H, Jia H, Dong J, Yang X, Li H, Ouyang D. Integrated in silico formulation design of self-emulsifying drug delivery systems. Acta Pharm Sin B. 2021;11(11):3585–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gao P, Jiang Z, Luo Q, Mu C, Cui M, Yang X. Correction to: Preparation and evaluation of Self-emulsifying Drug Delivery System (SEDDS) of cepharanthine. AAPS PharmSciTech. 2021;22(8):255.

    Article  PubMed  Google Scholar 

  59. Sunazuka Y, Ueda K, Higashi K, Tanaka Y, Moribe K. Combined effects of the drug distribution and mucus diffusion properties of self-microemulsifying drug delivery systems on the oral absorption of fenofibrate. Int J Pharm. 2018;546(1–2):263–71.

    Article  CAS  PubMed  Google Scholar 

  60. Wook Huh H, Na YG, Kang H, Kim M, Han M, Mai Anh Pham T, et al. Novel self-floating tablet for enhanced oral bioavailability of metformin based on cellulose. Int J Pharm. 2021;592:120113.

    Article  PubMed  Google Scholar 

  61. Fang DY, Pan H, Cui MS, Qiao S, Li X, Wang TY, et al. Fabrication of three-dimensional-printed ofloxacin gastric floating sustained-release tablets with different structures. J Drug Deliv Sci Technol. 2022;67: 102992.

    Article  CAS  Google Scholar 

  62. Qi X, Chen H, Rui Y, Yang F, Ma N, Wu Z. Floating tablets for controlled release of ofloxacin via compression coating of hydroxypropyl cellulose combined with effervescent agent. Int J Pharm. 2015;489(1–2):210–7.

    Article  CAS  PubMed  Google Scholar 

  63. Chen K, Wen H, Yang F, Yu Y, Gai X, Wang H, et al. Study of controlled-release floating tablets of dipyridamole using the dry-coated method. Drug Dev Ind Pharm. 2018;44(1):116–24.

    Article  CAS  PubMed  Google Scholar 

  64. Fukuda M, Peppas NA, McGinity JW. Floating hot-melt extruded tablets for gastroretentive controlled drug release system. J Control Release. 2006;115(2):121–9.

    Article  CAS  PubMed  Google Scholar 

  65. Tadros MI. Controlled-release effervescent floating matrix tablets of ciprofloxacin hydrochloride: development, optimization and in vitro-in vivo evaluation in healthy human volunteers. Eur J Pharm Biopharm. 2010;74(2):332–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

We are appreciative that this study had been funded by the Open Fund of the National Key Laboratory of Process Control and Intelligent Manufacturing Technology of Traditional Chinese Medicine in 2020 (No. SKL2020Z0206) and the Basic Research Project of Liaoning Provincial Department of Education in 2023 (No: JYTZD2023143).

Author information

Authors and Affiliations

Authors

Contributions

KZ: collecting, analyzing the data and writing manuscript; JZ: obtaining, analyzing the experimental data; QW: obtaining data and revising manuscript; YZ: analyzing and interpreting results; HY: investigation and supervision; XY: reviewing and editing manuscript; LH: reviewing and editing manuscript.

Corresponding authors

Correspondence to Xinggang Yang or Lian He.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, K., Zhao, J., Wang, Q. et al. Design and Evaluation of Ginkgolides Gastric Floating Controlled Release Tablets Based on Solid Supersaturated Self-nanoemulsifying. AAPS PharmSciTech 25, 7 (2024). https://doi.org/10.1208/s12249-023-02717-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02717-2

Keywords

Navigation