Skip to main content

Advertisement

Log in

Recent Advances of Multifunctional PLGA Nanocarriers in the Management of Triple-Negative Breast Cancer

  • Review Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Even though chemotherapy stands as a standard option in the therapy of TNBC, problems associated with it such as anemia, bone marrow suppression, immune suppression, toxic effects on healthy cells, and multi-drug resistance (MDR) can compromise their effects. Nanoparticles gained paramount importance in overcoming the limitations of conventional chemotherapy. Among the various options, nanotechnology has appeared as a promising path in preclinical and clinical studies for early diagnosis of primary tumors and metastases and destroying tumor cells. PLGA has been extensively studied amongst various materials used for the preparation of nanocarriers for anticancer drug delivery and adjuvant therapy because of their capability of higher encapsulation, easy surface functionalization, increased stability, protection of drugs from degradation versatility, biocompatibility, and biodegradability. Furthermore, this review also provides an overview of PLGA-based nanoparticles including hybrid nanoparticles such as the inorganic PLGA nanoparticles, lipid-coated PLGA nanoparticles, cell membrane–coated PLGA nanoparticles, hydrogels, exosomes, and nanofibers. The effects of all these systems in various in vitro and in vivo models of TNBC were explained thus pointing PLGA-based NPs as a strategy for the management of TNBC.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACC:

Adenoid cystic carcinoma

ACCA:

Acinic cell carcinoma

AFT:

Afatinib

ABC:

ATP-binding cassette

ALDH:

Aldehyde dehydrogenase

BC:

Breast cancer

BCSCs:

Breast cancer stem cells

2-BP- 2:

Bromopalmitate

Cap:

Capsaicin

COX-2:

Cyclooxygenase-2

CMCNPs:

Cell membrane–coated NPs

DOTAP:

1,2-Dioleoyl-3-trimethylammonium-propane

DOPC:

1,2-Dioleoyl-sn-glycero-3-phosphocholine

DSPE-PEG:

1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol)

DOX:

Doxorubicin

EGFR:

Epidermal growth factor receptor

ERK:

Extracellular signal–regulated kinases

EMT:

Epithelial-mesenchymal transition

FA:

Folic acid

FGFR:

Fibroblast growth factor receptors

HER2:

Human epidermal growth factor receptor 2

HA:

Hyaluronic acid

HPA:

Heparanase

IFN:

Interferon

IC50:

Inhibitory concentration 50

MDR:

Multi-drug resistance

Mtor :

Mammalian target of rapamycin

mPEG:

Modified poly ethylene glycol

MMP-9:

Matrix metallopeptidase 9

miRNA:

Micro-ribonucleic acid

NPs:

Nanoparticles

NIR:

Near infrared radiation

ncRNAs:

Non-coding RNAs

PLGA:

Poly-lactic-co-glycolic acid

PARPi:

Poly adenosine diphosphate-(ADP)-ribose polymerase inhibitors

PEG:

Poly ethylene glycol

PLL:

Poly-l-lysine

PTT:

Photothermal therapy

PTX:

Paclitaxel

RME:

Receptor-mediated endocytosis

siRNA:

Small interfering ribonucleic acid

STAT3:

Signal transducer and activator of transcription 3

SA:

Succinic anhydride

SEM:

Scanning electron microscopy

TNBC:

Triple-negative breast cancer

TME:

Tumor microenvironment

TEM:

Transmission electron microscopy

US-FDA:

United States Food and Drug Administration

VEGF:

Vascular endothelial growth factor

References

  1. Newton EE, Mueller LE, Treadwell SM, Morris CA, Machado HL. Molecular targets of triple-negative breast cancer: Where do we stand? Cancers (Basel). 2022;14:1–15. https://doi.org/10.3390/cancers14030482.

    Article  CAS  Google Scholar 

  2. Li Y, Zhang H, Merkher Y, Chen L, Liu N, Leonov S, Chen Y. Recent advances in therapeutic strategies for triple-negative breast cancer. J Hematol Oncol. 2022;15:1–30. https://doi.org/10.1186/s13045-022-01341-0.

    Article  CAS  Google Scholar 

  3. Chaudhuri A, Kumar DN, Shaik RA, Eid BG, Abdel-Naim AB, Md S, Ahmad A, Agrawal AK. Lipid-Based Nanoparticles as a Pivotal Delivery Approach in Triple Negative Breast Cancer (TNBC) Therapy. Int J Mol Sci. 2022;23(17):10068–79. https://doi.org/10.3390/ijms231710068.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Chary PS, Rajana N, Devabattula G, Bhavana V, Singh H, Godugu C, Guru SK, Singh SB, Mehra NK. Design, fabrication and evaluation of stabilized polymeric mixed micelles for effective management in cancer therapy. Pharm Res. 2022;39:2761–80. https://doi.org/10.1007/s11095-022-03395-8.

    Article  PubMed  CAS  Google Scholar 

  5. Zagami P, Carey LA. Triple negative breast cancer: Pitfalls and progress. Npj Breast Cancer. 2022;8(1):1–10. https://doi.org/10.1038/s41523-022-00468-0.

    Article  CAS  Google Scholar 

  6. Dinakar YH, Karole A, Parvez S, Jain V, Mudavath SL. Folate receptor targeted NIR cleavable liposomal delivery system augment penetration and therapeutic efficacy in breast cancer. Biochim Biophys Acta - Gen Subj. 2023;1867:130396. https://doi.org/10.1016/j.bbagen.2023.130396.

    Article  PubMed  CAS  Google Scholar 

  7. Jain V, Kumar H, Anod HV, Chand P, Gupta NV, Dey S, Kesharwani SS. A review of nanotechnology-based approaches for breast cancer and triple-negative breast cancer. J Control Release. 2020;326:628–47. https://doi.org/10.1016/j.jconrel.2020.07.003.

    Article  PubMed  CAS  Google Scholar 

  8. Parvez S, Karole A, Dinakar YH, Mudavath SL. Nanoformulation mediated silencing of P-gp efflux protein for the efficient oral delivery of anti-leishmanial drugs. J Drug Deliv Sci Technol. 2022;78:103959. https://doi.org/10.1016/j.jddst.2022.103959.

    Article  CAS  Google Scholar 

  9. Sur S, Rathore A, Dave V, Reddy KR, Chouhan RS, Sadhu V. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Struct Nano-Objects. 2019;20:100397. https://doi.org/10.1016/j.nanoso.2019.100397.

    Article  CAS  Google Scholar 

  10. Moritz M, Geszke-Moritz M. Recent developments - in the application of polymeric nanoparticles as drug carriers. Adv Clin Exp Med. 2015;24:749–58. https://doi.org/10.17219/acem/31802.

    Article  PubMed  Google Scholar 

  11. Misra R, Patra B, Varadaraj S, Verma RS. Establishing the promising role of novel combination of triple therapeutics delivery using polymeric nanoparticles for triple negative breast cancer therapy. BioImpacts. 2021;11:199–207. https://doi.org/10.34172/bi.2021.27.

    Article  PubMed  CAS  Google Scholar 

  12. Shokooh MK, Emami F, Jeong JH, Yook S. Bio-inspired and smart nanoparticles for triple negative breast cancer microenvironment. Pharmaceutics. 2021;13:1–24. https://doi.org/10.3390/pharmaceutics13020287.

    Article  CAS  Google Scholar 

  13. Miller-Kleinhenz JM, Bozeman EN, Yang L. Targeted nanoparticles for image-guided treatment of triple-negative breast cancer: clinical significance and technological advances, Wiley Interdiscip. Rev. Nanomedicine. NanoBiotechnology. 2015;7:797–816. https://doi.org/10.1002/wnan.1343.

    Article  CAS  Google Scholar 

  14. Jin G, He R, Liu Q, Dong Y, Lin M, Li W, Xu F. Theranostics of triple-negative breast cancer based on conjugated polymer nanoparticles. ACS Appl Mater Interfaces. 2018;10:10634–46. https://doi.org/10.1021/acsami.7b14603.

    Article  PubMed  CAS  Google Scholar 

  15. Zhao Y, Alakhova DY, Zhao X, Band V, Batrakova EV, Kabanov AV. Eradication of cancer stem cells in triple negative breast cancer using doxorubicin/pluronic polymeric micelles, Nanomedicine Nanotechnology. Biol Med. 2020;24:102124. https://doi.org/10.1016/j.nano.2019.102124.

    Article  CAS  Google Scholar 

  16. Selestin Raja I, Thangam R, Fathima NN. Polymeric micelle of a gelatin-oleylamine conjugate: a prominent drug delivery carrier for treating triple negative breast cancer cells. ACS Appl Bio Mater. 2018;1:1725–34. https://doi.org/10.1021/acsabm.8b00526.

    Article  PubMed  CAS  Google Scholar 

  17. Jain A, Mahira S, Majoral JP, Bryszewska M, Khan W, Ionov M. Dendrimer mediated targeting of siRNA against polo-like kinase for the treatment of triple negative breast cancer. J Biomed Mater Res - Part A. 2019;107:1933–44. https://doi.org/10.1002/jbm.a.36701.

    Article  CAS  Google Scholar 

  18. Ahir M, Upadhyay P, Ghosh A, Sarker S, Bhattacharya S, Gupta P, Ghosh S, Chattopadhyay S, Adhikary A. Delivery of dual miRNA through CD44-targeted mesoporous silica nanoparticles for enhanced and effective triple-negative breast cancer therapy. Biomater Sci. 2020;8:2939–54. https://doi.org/10.1039/d0bm00015a.

    Article  PubMed  CAS  Google Scholar 

  19. Sahu T, Ratre YK, Chauhan S, Bhaskar LVKS, Nair MP, Verma HK. Nanotechnology based drug delivery system: current strategies and emerging therapeutic potential for medical science. J Drug Deliv Sci Technol. 2021;63:102487. https://doi.org/10.1016/j.jddst.2021.102487.

    Article  CAS  Google Scholar 

  20. Masood F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater Sci Eng C. 2016;60:569–78. https://doi.org/10.1016/j.msec.2015.11.067.

    Article  CAS  Google Scholar 

  21. Parveen S, Sahoo SK. Polymeric nanoparticles for cancer therapy. J Drug Target. 2008;16:108–23. https://doi.org/10.1080/10611860701794353.

    Article  PubMed  CAS  Google Scholar 

  22. Pridgen EM, Langer R, Farokhzad OC. Biodegradable, polymeric nanoparticle delivery systems for cancer therapy. Nanomedicine. 2007;2:669–80. https://doi.org/10.2217/17435889.2.5.669.

    Article  PubMed  CAS  Google Scholar 

  23. Chaudhari D, Kuche K, Yadav V, Ghadi R, Date T, Bhargavi N, Jain S. Exploring paclitaxel-loaded adenosine-conjugated PEGylated PLGA nanoparticles for targeting triple-negative breast cancer, Drug Deliv. Transl Res. 2023;13:1074–87. https://doi.org/10.1007/s13346-022-01273-9.

    Article  CAS  Google Scholar 

  24. Badawi NM, Attia YM, El-Kersh DM, Hammam OA, Khalifa MKA. Investigating the impact of optimized trans-cinnamic acid-loaded PLGA nanoparticles on epithelial to mesenchymal transition in breast cancer. Int J Nanomedicine. 2022;17:733–50. https://doi.org/10.2147/IJN.S345870.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Su WP, Cheng FY, Bin Shieh D, Yeh CS, Su WC. PLGA nanoparticles codeliver paclitaxel and Stat3 siRNA to overcome cellular resistance in lung cancer cells. Int J Nanomedicine. 2012;7:4269–83. https://doi.org/10.2147/IJN.S33666.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Shaji J, Lal M. Nanocarriers for targeting in inflammation, Asian J. Pharm. Clin Res. 2013;6:3–12.

    CAS  Google Scholar 

  27. Yin L, Duan JJ, Bian XW, Yu SC. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020;22:1–13. https://doi.org/10.1186/s13058-020-01296-5.

    Article  Google Scholar 

  28. Cao L, Niu Y. Triple negative breast cancer: special histological types and emerging therapeutic methods. Cancer Biol Med. 2020;17:293–306. https://doi.org/10.20892/j.issn.2095-3941.2019.0465.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Bosch A, Eroles P, Zaragoza R, Viña JR, Lluch A. Triple-negative breast cancer: molecular features, pathogenesis, treatment and current lines of research. Cancer Treat Rev. 2010;36:206–15. https://doi.org/10.1016/j.ctrv.2009.12.002.

    Article  PubMed  CAS  Google Scholar 

  30. da Silva JL, Cardoso Nunes NC, Izetti P, de Mesquita GG, de Melo AC. Triple negative breast cancer: a thorough review of biomarkers. Crit Rev Oncol Hematol. 2020;145:102855. https://doi.org/10.1016/j.critrevonc.2019.102855.

    Article  PubMed  Google Scholar 

  31. Zheng H, Siddharth S, Parida S, Wu X, Sharma D. Tumor microenvironment: Key players in triple negative breast cancer immunomodulation. Cancers (Basel). 2021;13:1–21. https://doi.org/10.3390/cancers13133357.

    Article  CAS  Google Scholar 

  32. Kumar H, Gupta NV, Jain R, Madhunapantula SV, Babu CS, Kesharwani SS, Dey S, Jain V. A review of biological targets and therapeutic approaches in the management of triple-negative breast cancer. J Adv Res. 2023;1–10. https://doi.org/10.1016/j.jare.2023.02.005.

  33. Deepak KGK, Vempati R, Nagaraju GP, Dasari VR, Nagini S, Rao DN, Malla RR. Tumor microenvironment: challenges and opportunities in targeting metastasis of triple negative breast cancer. Pharmacol Res. 2020;153:104683. https://doi.org/10.1016/j.phrs.2020.104683.

    Article  PubMed  CAS  Google Scholar 

  34. Resemann HK, Watson CJ, Lloyd-Lewis B. The stat3 paradox: a killer and an oncogene. Mol Cell Endocrinol. 2014;382:603–11. https://doi.org/10.1016/j.mce.2013.06.029.

    Article  PubMed  CAS  Google Scholar 

  35. Crabtree JS, Miele L. Breast cancer stem cells. Biomedicines. 2018;6(3):1–10. https://doi.org/10.3390/biomedicines6030077.

    Article  CAS  Google Scholar 

  36. Hua Z, White J, Zhou J. Cancer stem cells in TNBC. Semin Cancer Biol. 2022;82:26–34. https://doi.org/10.1016/J.SEMCANCER.2021.06.015.

    Article  PubMed  CAS  Google Scholar 

  37. Neophytou C, Boutsikos P, Papageorgis P. Molecular mechanisms and emerging therapeutic targets of triple-negative breast cancer metastasis, Front. Oncol. 2018;8:31–45. https://doi.org/10.3389/fonc.2018.00031.

    Article  Google Scholar 

  38. Costa RLB, Han HS, Gradishar WJ. Targeting the PI3K/AKT/mTOR pathway in triple-negative breast cancer: a review. Breast Cancer Res Treat. 2018;169:397–406. https://doi.org/10.1007/s10549-018-4697-y.

    Article  PubMed  CAS  Google Scholar 

  39. Wu N, Zhang J, Zhao J, Mu K, Zhang J, Jin Z, Yu J, Liu J. Precision medicine based on tumorigenic signaling pathways for triple-negative breast cancer. Oncol Lett. 2018;16:4984–96. https://doi.org/10.3892/ol.2018.9290.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Habib JG, O’Shaughnessy JA. The hedgehog pathway in triple-negative breast cancer. Cancer Med. 2016;5:2989–3006. https://doi.org/10.1002/cam4.833.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dinakar YH, Kumar H, Mudavath SL, Jain R, Ajmeer R, Jain V. Role of STAT3 in the initiation, progression, proliferation and metastasis of breast cancer and strategies to deliver JAK and STAT3 inhibitors. Life Sci. 2022;309:120996. https://doi.org/10.1016/j.lfs.2022.120996.

    Article  PubMed  CAS  Google Scholar 

  42. Nedeljković M, Damjanović A. Mechanisms of chemotherapy resistance in triple-negative breast cancer—how we can rise to the challenge. Cells. 2019;957–73. https://doi.org/10.3390/cells8090957.

  43. Zhou C, Chen H-Y, Chen H, Rui W. Targeting cancer stem cells in cancer therapy. 2016;1–30. https://doi.org/10.2991/icmmbe-16.2016.17.

  44. Chang-Qing Y, Jie L, Shi-Qi Z, Kun Z, Zi-Qian G, Ran X, Hui-Meng L, Ren-Bin Z, Gang Z, Da-Chuan Y, Chen-Yan Z. Recent treatment progress of triple negative breast cancer. Prog Biophys Mol Biol. 2020;151:40–53. https://doi.org/10.1016/j.pbiomolbio.2019.11.007.

    Article  PubMed  CAS  Google Scholar 

  45. Li CJ, Tzeng YDT, Chiu YH, Lin HY, Hou MF, Chu PY. Pathogenesis and potential therapeutic targets for triple-negative breast cancer. Cancers (Basel). 2021;13:1–21. https://doi.org/10.3390/cancers13122978.

    Article  CAS  Google Scholar 

  46. Hou K, Ning Z, Chen H, Wu Y. Nanomaterial technology and triple negative breast cancer, Front. Oncol. 2022;11:1–6. https://doi.org/10.3389/fonc.2021.828810.

    Article  CAS  Google Scholar 

  47. Nahvi I, Belkahla S, Biswas S, Chakraborty S. A review on nanocarrier mediated treatment and management of triple negative breast cancer: a Saudi Arabian scenario. Front Oncol. 2022;12:953865. https://doi.org/10.3389/FONC.2022.953865/PDF.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Sharma S, Parmar A, Kori S, Sandhir R. PLGA-based nanoparticles: a new paradigm in biomedical applications. TrAC - Trends Anal Chem. 2016;80:30–40. https://doi.org/10.1016/j.trac.2015.06.014.

    Article  CAS  Google Scholar 

  49. Ding D, Zhu Q. Recent advances of PLGA micro/nanoparticles for the delivery of biomacromolecular therapeutics. Mater Sci Eng C. 2018;92:1041–60. https://doi.org/10.1016/j.msec.2017.12.036.

    Article  CAS  Google Scholar 

  50. Liu M, Xu N, Liu W, Xie Z. Polypyrrole coated PLGA core-shell nanoparticles for drug delivery and photothermal therapy. RSC Adv. 2016;6:84269–75. https://doi.org/10.1039/c6ra18261e.

    Article  CAS  Google Scholar 

  51. Dang Y, Guan J. Nanoparticle-based drug delivery systems for cancer therapy. Smart Mater Med. 2020;1:10–9. https://doi.org/10.1016/j.smaim.2020.04.001.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ghitman J, Biru EI, Stan R, Iovu H. Review of hybrid PLGA nanoparticles: future of smart drug delivery and theranostics medicine. Mater Des. 2020;193:108805. https://doi.org/10.1016/j.matdes.2020.108805.

    Article  CAS  Google Scholar 

  53. Pandita D, Kumar S, Lather V. Hybrid poly(lactic-co-glycolic acid) nanoparticles: design and delivery prospectives. Drug Discov Today. 2015;20:95–104. https://doi.org/10.1016/j.drudis.2014.09.018.

    Article  PubMed  CAS  Google Scholar 

  54. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: An overview of biomedical applications. J Control Release. 2012;161:505–22. https://doi.org/10.1016/j.jconrel.2012.01.043.

    Article  PubMed  CAS  Google Scholar 

  55. Bahlool AZ, Fattah S, O’Sullivan A, Cavanagh B, MacLoughlin R, Keane J, O’Sullivan MP, Cryan SA. Development of inhalable ATRA-loaded PLGA nanoparticles as host-directed immunotherapy against tuberculosis. Pharmaceutics. 2022;14:. https://doi.org/10.3390/pharmaceutics14081745.

  56. Surendran SP, Moon MJ, Park R, Jeong YY. Bioactive nanoparticles for cancer immunotherapy. Int J Mol Sci. 2018;19:1–18. https://doi.org/10.3390/ijms19123877.

    Article  CAS  Google Scholar 

  57. Zou L, Song X, Yi T, Li S, Deng H, Chen X, Li Z, Bai Y, Zhong Q, Wei Y, Zhao X. Administration of PLGA nanoparticles carrying shRNA against focal adhesion kinase and CD44 results in enhanced antitumor effects against ovarian cancer. Cancer Gene Ther. 2013;20:242–50. https://doi.org/10.1038/cgt.2013.12.

    Article  PubMed  CAS  Google Scholar 

  58. Wu S, Mao Y, Liu Q, Yan X, Zhang J, Wang N. Sustained release of Gas6 via mPEG-PLGA nanoparticles enhances the therapeutic effects of MERTK gene therapy in RCS Rats. Front Med. 2021;8:1–14. https://doi.org/10.3389/fmed.2021.794299.

    Article  Google Scholar 

  59. Nirmal GR, Lin ZC, Tsai MJ, Yang SC, Alalaiwe A, Fang JY. Photothermal treatment by PLGA–gold nanorod–isatin nanocomplexes under near-infrared irradiation for alleviating psoriasiform hyperproliferation. J Control Release. 2021;333:487–99. https://doi.org/10.1016/j.jconrel.2021.04.005.

    Article  PubMed  CAS  Google Scholar 

  60. Acharya S, Sahoo SK. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv Drug Deliv Rev. 2011;63:170–83. https://doi.org/10.1016/j.addr.2010.10.008.

    Article  PubMed  CAS  Google Scholar 

  61. Mir M, Ahmed N, van Rehman A. Recent applications of PLGA based nanostructures in drug delivery. Colloids Surfaces B Biointerfaces. 2017;159:217–31. https://doi.org/10.1016/j.colsurfb.2017.07.038.

    Article  PubMed  CAS  Google Scholar 

  62. Zhang K, Tang X, Zhang J, Lu W, Lin X, Zhang Y, Tian B, Yang H, He H. PEG-PLGA copolymers: Their structure and structure-influenced drug delivery applications. J Control Release. 2014;183:77–86. https://doi.org/10.1016/j.jconrel.2014.03.026.

    Article  PubMed  CAS  Google Scholar 

  63. Qiao M, Chen D, Ma X, Liu Y. Injectable biodegradable temperature-responsive PLGA-PEG-PLGA copolymers: Synthesis and effect of copolymer composition on the drug release from the copolymer-based hydrogels. Int J Pharm. 2005;294:103–12. https://doi.org/10.1016/j.ijpharm.2005.01.017.

    Article  PubMed  CAS  Google Scholar 

  64. Choi SH, Park TG. Synthesis and characterization of elastic PLGA/PCL/PLGA tri-block copolymers. J Biomater Sci Polym Ed. 2002;13:1163–73. https://doi.org/10.1163/156856202320813864.

    Article  PubMed  CAS  Google Scholar 

  65. Rezvantalab S, Drude NI, Moraveji MK, Güvener N, Koons EK, Shi Y, Lammers T, Kiessling F. PLGA-based nanoparticles in cancer treatment. Front Pharmacol. 2018;9:1–19. https://doi.org/10.3389/fphar.2018.01260.

    Article  CAS  Google Scholar 

  66. Alvi M, Yaqoob A, Rehman K, Shoaib SM, Akash MSH. PLGA-based nanoparticles for the treatment of cancer: current strategies and perspectives. AAPS Open. 2022;8:. https://doi.org/10.1186/s41120-022-00060-7.

  67. Song W, Tang Z, Lei T, Wen X, Wang G, Zhang D, Deng M, Tang X, Chen X. Stable loading and delivery of disulfiram with mPEG-PLGA/PCL mixed nanoparticles for tumor therapy, Nanomedicine Nanotechnology. Biol Med. 2016;12:377–86. https://doi.org/10.1016/J.NANO.2015.10.022.

    Article  CAS  Google Scholar 

  68. Liu P, Yu H, Sun Y, Zhu M, Duan Y. A mPEG-PLGA-b-PLL copolymer carrier for adriamycin and siRNA delivery. Biomaterials. 2012;33:4403–12. https://doi.org/10.1016/j.biomaterials.2012.02.041.

    Article  PubMed  CAS  Google Scholar 

  69. Gajendiran M, Yousuf SMJ, Elangovan V, Balasubramanian S. Gold nanoparticle conjugated PLGA-PEG-SA-PEG-PLGA multiblock copolymer nanoparticles: Synthesis, characterization, in vivo release of rifampicin. J Mater Chem B. 2014;2:418–27. https://doi.org/10.1039/c3tb21113d.

    Article  PubMed  CAS  Google Scholar 

  70. Nagahama K, Kawano D, Oyama N, Takemoto A, Kumano T, Kawakami J. Self-assembling polymer micelle/clay nanodisk/doxorubicin hybrid injectable gels for safe and efficient focal treatment of cancer. Biomacromol. 2015;16:880–9. https://doi.org/10.1021/bm5017805.

    Article  CAS  Google Scholar 

  71. Zhang X, Xu Y, Zhang W, Fu X, Hao Z, He M, Trefilov D, Ning X, Ge H, Chen Y. Controllable subtractive nanoimprint lithography for precisely fabricating paclitaxel-loaded PLGA nanocylinders to enhance anticancer efficacy. ACS Appl Mater Interfaces. 2020;12:14797–805. https://doi.org/10.1021/acsami.9b21346.

    Article  PubMed  CAS  Google Scholar 

  72. Bhide AR, Jindal AB. Fabrication and evaluation of artemether loaded polymeric nanorods obtained by mechanical stretching of nanospheres. Int J Pharm. 2021;605:120820. https://doi.org/10.1016/j.ijpharm.2021.120820.

    Article  PubMed  CAS  Google Scholar 

  73. Kim SJ, Jang DH, Park WH, Min BM. Fabrication and characterization of 3-dimensional PLGA nanofiber/microfiber composite scaffolds. Polymer (Guildf). 2010;51:1320–7. https://doi.org/10.1016/j.polymer.2010.01.025.

    Article  CAS  Google Scholar 

  74. Bowerman CJ, Byrne JD, Chu KS, Schorzman AN, Keeler AW, Sherwood CA, Perry JL, Luft JC, Darr DB, Deal AM, Napier ME, Zamboni WC, Sharpless NE, Perou CM, DeSimone JM. Docetaxel-loaded PLGA nanoparticles improve efficacy in taxane-resistant triple-negative breast cancer. Nano Lett. 2017;17:242–8. https://doi.org/10.1021/acs.nanolett.6b03971.

    Article  PubMed  CAS  Google Scholar 

  75. Domínguez-Ríos R, Sánchez-Ramírez DR, Ruiz-Saray K, Oceguera-Basurto PE, Almada M, Juárez J, Zepeda-Moreno A, del Toro-Arreola A, Topete A, Daneri-Navarro A. Cisplatin-loaded PLGA nanoparticles for HER2 targeted ovarian cancer therapy. Colloids Surfaces B Biointerfaces. 2019;178:199–207. https://doi.org/10.1016/j.colsurfb.2019.03.011.

    Article  PubMed  CAS  Google Scholar 

  76. Wang X, Zhu X, Li B, Wei X, Chen Y, Zhang Y, Wang Y, Zhang W, Liu S, Liu Z, Zhai W, Zhu P, Gao Y, Chen Z. Intelligent biomimetic nanoplatform for systemic treatment of metastatic triple-negative breast cancer via enhanced EGFR-targeted therapy and immunotherapy. ACS Appl Mater Interfaces. 2022;14:23152–63. https://doi.org/10.1021/acsami.2c02925.

    Article  CAS  Google Scholar 

  77. Zhou Z, Kennell C, Lee JY, Leung YK, Tarapore P. Calcium phosphate-polymer hybrid nanoparticles for enhanced triple negative breast cancer treatment via co-delivery of paclitaxel and miR-221/222 inhibitors, Nanomedicine Nanotechnology. Biol Med. 2017;13:403–10. https://doi.org/10.1016/j.nano.2016.07.016.

    Article  CAS  Google Scholar 

  78. Rezvantalab S, Drude NI, Moraveji MK, Güvener N, Koons EK, Shi Y, Lammers T, Kiessling F. PLGA-based nanoparticles in cancer treatment. Front Pharmacol. 2018;9:1–19. https://doi.org/10.3389/fphar.2018.01260.

    Article  CAS  Google Scholar 

  79. Cerqueira BBS, Lasham A, Shelling AN, Al-Kassas R. Development of biodegradable PLGA nanoparticles surface engineered with hyaluronic acid for targeted delivery of paclitaxel to triple negative breast cancer cells. Mater Sci Eng C. 2017;76:593–600. https://doi.org/10.1016/J.MSEC.2017.03.121.

    Article  CAS  Google Scholar 

  80. Venugopal V, Krishnan S, Palanimuthu VR, Sankarankutty S, Kalaimani JK, Karupiah S, Kit NS, Hock TT. Anti-EGFR anchored paclitaxel loaded PLGA nanoparticles for the treatment of triple negative breast cancer In-vitro and in-vivo anticancer activities. PLoS One. 2018;13:e0206109. https://doi.org/10.1371/JOURNAL.PONE.0206109.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Valcourt DM, Dang MN, Day ES. IR820-loaded PLGA nanoparticles for photothermal therapy of triple-negative breast cancer. J Biomed Mater Res Part A. 2019;107:1702–12. https://doi.org/10.1002/JBM.A.36685.

    Article  CAS  Google Scholar 

  82. Swider E, Koshkina O, Tel J, Cruz LJ, de Vries IJM, Srinivas M. Customizing poly(lactic-co-glycolic acid) particles for biomedical applications. Acta Biomater. 2018;73:38–51. https://doi.org/10.1016/J.ACTBIO.2018.04.006.

    Article  PubMed  CAS  Google Scholar 

  83. Choudhari AS, Mandave PC, Deshpande M, Ranjekar P, Prakash O. Phytochemicals in cancer treatment: from preclinical studies to clinical practice. Front Pharmacol. 2020;10:1–17. https://doi.org/10.3389/fphar.2019.01614.

    Article  CAS  Google Scholar 

  84. Issa AY, Volate SR, Wargovich MJ. The role of phytochemicals in inhibition of cancer and inflammation: new directions and perspectives. J Food Compos Anal. 2006;19:405–19. https://doi.org/10.1016/j.jfca.2006.02.009.

    Article  CAS  Google Scholar 

  85. Russo GL. Ins and outs of dietary phytochemicals in cancer chemoprevention. Biochem Pharmacol. 2007;74:533–44. https://doi.org/10.1016/j.bcp.2007.02.014.

    Article  PubMed  CAS  Google Scholar 

  86. Aggarwal BB, Kunnumakkara AB, Harlkumar KB, Tharakan ST, Sung B, Anand P. Potential of spice-derived phytochemicals for cancer prevention. Planta Med. 2008;74:1560–9. https://doi.org/10.1055/s-2008-1074578.

    Article  PubMed  CAS  Google Scholar 

  87. Israel BB, Tilghman SL, Parker-Lemieux K, Payton-Stewart F. Phytochemicals: current strategies for treating breast cancer (review). Oncol Lett. 2018;15:7471–8. https://doi.org/10.3892/ol.2018.8304.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Khan MA, Siddiqui S, Ahmad I, Singh R, Mishra DP, Srivastava AN, Ahmad R. Phytochemicals from Ajwa dates pulp extract induce apoptosis in human triple-negative breast cancer by inhibiting AKT/mTOR pathway and modulating Bcl-2 family proteins. Sci Rep. 2021;11:1–14. https://doi.org/10.1038/s41598-021-89420-z.

    Article  CAS  Google Scholar 

  89. Sánchez-Valdeolívar CA, Alvarez-Fitz P, Zacapala-Gómez AE, Acevedo-Quiroz M, Cayetano-Salazar L, Olea-Flores M, Castillo-Reyes JU, Navarro-Tito N, Ortuño-Pineda C, Leyva-Vázquez MA, Ortíz-Ortíz J, Castro-Coronel Y, Mendoza-Catalán MA. Phytochemical profile and antiproliferative effect of Ficus crocata extracts on triple-negative breast cancer cells. BMC Complement Med Ther. 2020;20:1–15. https://doi.org/10.1186/s12906-020-02993-6.

    Article  CAS  Google Scholar 

  90. Knickle A, Fernando W, Greenshields AL, Rupasinghe HPV, Hoskin DW. Myricetin-induced apoptosis of triple-negative breast cancer cells is mediated by the iron-dependent generation of reactive oxygen species from hydrogen peroxide. Food Chem Toxicol. 2018;118:154–67. https://doi.org/10.1016/j.fct.2018.05.005.

    Article  PubMed  CAS  Google Scholar 

  91. Tawara K, Scott H, Emathinger J, Ide A, Fox R, Greiner D, LaJoie D, Hedeen D, Nandakumar M, Oler AJ, Holzer R, Jorcyk C. Co-expression of VEGF and IL-6 family cytokines is associated with decreased survival in HER2 negative breast cancer patients: subtype-specific IL-6 family cytokine-mediated VEGF secretion, Transl. Oncol. 2019;12:245–55. https://doi.org/10.1016/j.tranon.2018.10.004.

    Article  Google Scholar 

  92. Silva LM, Hill LE, Figueiredo E, Gomes CL. Delivery of phytochemicals of tropical fruit by-products using poly (dl-lactide-co-glycolide) (PLGA) nanoparticles: synthesis, characterization, and antimicrobial activity. Food Chem. 2014;165:362–70. https://doi.org/10.1016/j.foodchem.2014.05.118.

    Article  PubMed  CAS  Google Scholar 

  93. Pereira MC, Hill LE, Zambiazi RC, Mertens-Talcott S, Talcott S, Gomes CL. Nanoencapsulation of hydrophobic phytochemicals using poly (dl-lactide-co-glycolide) (PLGA) for antioxidant and antimicrobial delivery applications: Guabiroba fruit (Campomanesia xanthocarpa O Berg) study. LWT. 2015;63:100–7. https://doi.org/10.1016/j.lwt.2015.03.062.

    Article  CAS  Google Scholar 

  94. Wang S, Su R, Nie S, Sun M, Zhang J, Wu D, Moustaid-Moussa N. Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals. J Nutr Biochem. 2014;25:363–76. https://doi.org/10.1016/j.jnutbio.2013.10.002.

    Article  PubMed  CAS  Google Scholar 

  95. Singh P, Sahoo SK. Piperlongumine loaded PLGA nanoparticles inhibit cancer stem-like cells through modulation of STAT3 in mammosphere model of triple negative breast cancer. Int J Pharm. 2022;616:121526. https://doi.org/10.1016/j.ijpharm.2022.121526.

    Article  PubMed  CAS  Google Scholar 

  96. Rad JG, Hoskin DW. Delivery of apoptosis-inducing piperine to triple-negative breast cancer cells via co-polymeric nanoparticles. Anticancer Res. 2020;40:689–94. https://doi.org/10.21873/anticanres.13998.

    Article  PubMed  CAS  Google Scholar 

  97. Huang Z, Yu P, Tang J. <p>Characterization of triple-negative breast cancer MDA-MB-231 cell spheroid model</p>. Onco Targets Ther. 2020;13:5395–405. https://doi.org/10.2147/OTT.S249756.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Subbiah R, Veerapandian M, Yun KS. Nanoparticles: functionalization and multifunctional applications in biomedical sciences. Curr Med Chem. 2011;17:4559–77. https://doi.org/10.2174/092986710794183024.

    Article  Google Scholar 

  99. Wang S, Zhang J, Wang Y, Chen M. Hyaluronic acid-coated PEI-PLGA nanoparticles mediated co-delivery of doxorubicin and miR-542-3p for triple negative breast cancer therapy, Nanomedicine Nanotechnology. Biol Med. 2016;12:411–20. https://doi.org/10.1016/j.nano.2015.09.014.

    Article  CAS  Google Scholar 

  100. Dinakar YH, Karole A, Parvez S, Jain V, Mudavath SL. Organ-restricted delivery through stimuli-responsive nanocarriers for lung cancer therapy. Life Sci. 2022;310:121133. https://doi.org/10.1016/j.lfs.2022.121133.

    Article  PubMed  CAS  Google Scholar 

  101. Mekseriwattana W, Phungsom A, Sawasdee K, Wongwienkham P, Kuhakarn C, Chaiyen P, Katewongsa KP. Dual functions of riboflavin-functionalized poly(lactic-co-glycolic acid) nanoparticles for enhanced drug delivery efficiency and photodynamic therapy in triple-negative breast cancer cells. Photochem Photobiol. 2021;97:1548–57. https://doi.org/10.1111/php.13464.

    Article  PubMed  CAS  Google Scholar 

  102. Xin Y, Qi Q, Mao Z, Zhan X. PLGA nanoparticles introduction into mitoxantrone-loaded ultrasound-responsive liposomes: in vitro and in vivo investigations. Int J Pharm. 2017;528:47–54. https://doi.org/10.1016/J.IJPHARM.2017.05.059.

    Article  PubMed  CAS  Google Scholar 

  103. Cui Y, Zhang M, Zeng F, Jin H, Xu Q, Huang Y. Dual-targeting magnetic PLGA nanoparticles for codelivery of paclitaxel and curcumin for brain tumor therapy. ACS Appl Mater Interfaces. 2016;8:32159–69. https://doi.org/10.1021/ACSAMI.6B10175/SUPPL_FILE/AM6B10175_SI_002.MPG.

    Article  PubMed  CAS  Google Scholar 

  104. Fernández-Álvarez F, García-García G, Arias JL, Vazquez-Duhalt R, Juarez-Moreno K, Mota-Morales JD. A tri-stimuli responsive (maghemite/PLGA)/chitosan nanostructure with promising applications in lung cancer. Pharm. 2021;13:1232. https://doi.org/10.3390/PHARMACEUTICS13081232.

    Article  Google Scholar 

  105. Haque S, Cook K, Sahay G, Sun C. RNA-based therapeutics: current developments in targeted molecular therapy of triple-negative breast cancer. Pharmaceutics. 2021;13:1–30. https://doi.org/10.3390/pharmaceutics13101694.

    Article  CAS  Google Scholar 

  106. Valcourt DM, Day ES. Dual regulation of miR-34a and notch signaling in triple-negative breast cancer by antibody/miRNA nanocarriers. Mol Ther - Nucleic Acids. 2020;21:290–8. https://doi.org/10.1016/j.omtn.2020.06.003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Camorani S, Tortorella S, Agnello L, Spanu C, d’Argenio A, Nilo R, Zannetti A, Locatelli E, Fedele M, Comes Franchini M, Cerchia L. Aptamer-functionalized nanoparticles mediate PD-L1 siRNA delivery for effective gene silencing in triple-negative breast cancer cells. Pharmaceutics. 2022;14. https://doi.org/10.3390/pharmaceutics14102225.

  108. Devulapally R, Sekar NM, Sekar TV, Foygel K, Massoud TF, Willmann JK, Paulmurugan R. Polymer nanoparticles mediated codelivery of AntimiR-10b and antimiR-21 for achieving triple negative breast cancer therapy. ACS Nano. 2015;9:2290–302. https://doi.org/10.1021/nn507465d.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Bose RJC, Lee SH, Park H. Lipid-based surface engineering of PLGA nanoparticles for drug and gene delivery applications. Biomater Res. 2016;20:1–9. https://doi.org/10.1186/s40824-016-0081-3.

    Article  CAS  Google Scholar 

  110. Rajana N, Mounika A, Chary PS, Bhavana V, Urati A, Khatri D, Singh SB, Mehra NK. Multifunctional hybrid nanoparticles in diagnosis and therapy of breast cancer. J Control Release. 2022;352:1024–47. https://doi.org/10.1016/j.jconrel.2022.11.009.

    Article  PubMed  CAS  Google Scholar 

  111. Kaviarasi B, Rajana N, Pooja YS, Rajalakshmi AN, Singh SB, Mehra NK. Investigating the effectiveness of difluprednate-loaded core-shell lipid-polymeric hybrid nanoparticles for ocular delivery. Int J Pharm. 2023;640:123006. https://doi.org/10.1016/j.ijpharm.2023.123006.

    Article  PubMed  CAS  Google Scholar 

  112. Sivadasan D, Sultan MH, Madkhali O, Almoshari Y, Thangavel N. Polymeric lipid hybrid nanoparticles (Plns) as emerging drug delivery platform—a comprehensive review of their properties, preparation methods, and therapeutic applications. Pharmaceutics. 2021;13:. https://doi.org/10.3390/pharmaceutics13081291.

  113. Mohanty A, Uthaman S, Park IK. Utilization of polymer-lipid hybrid nanoparticles for targeted anti-cancer therapy. Molecules. 2020;25:. https://doi.org/10.3390/molecules25194377.

  114. Wang L, Griffel B, Xu X. Synthesis of PLGA–lipid hybrid nanoparticles for siRNA delivery using the emulsion method PLGA-PEG–lipid nanoparticles for siRNA delivery. Methods Mol Biol. 2017;1632:231–40. https://doi.org/10.1007/978-1-4939-7138-1_15.

    Article  PubMed  CAS  Google Scholar 

  115. Mieszawska AJ, Kim Y, Gianella A, Van Rooy I, Priem B, Labarre MP, Ozcan C, Cormode DP, Petrov A, Langer R, Farokhzad OC, Fayad ZA, Mulder WJM. Synthesis of polymer-lipid nanoparticles for image-guided delivery of dual modality therapy. Bioconjug Chem. 2013;24:1429–34. https://doi.org/10.1021/bc400166j.

    Article  PubMed  CAS  Google Scholar 

  116. Godara S, Lather V, Kirthanashri SV, Awasthi R, Pandita D. Lipid-PLGA hybrid nanoparticles of paclitaxel: preparation, characterization, in vitro and in vivo evaluation. Mater Sci Eng C. 2020;109:110576. https://doi.org/10.1016/j.msec.2019.110576.

    Article  CAS  Google Scholar 

  117. Cao D, Zhang X, Akabar MD, Luo Y, Wu H, Ke X, Ci T. Liposomal doxorubicin loaded PLGA-PEG-PLGA based thermogel for sustained local drug delivery for the treatment of breast cancer. Artif Cells Nanomed Biotechnol. 2019;47:181–91. https://doi.org/10.1080/21691401.2018.1548470.

    Article  PubMed  CAS  Google Scholar 

  118. Narain A, Asawa S, Chhabria V, Patil-Sen Y. Cell membrane coated nanoparticles: next-generation therapeutics. Nanomedicine. 2017;12:2677–92. https://doi.org/10.2217/nnm-2017-0225.

    Article  PubMed  CAS  Google Scholar 

  119. Ai X, Wang S, Duan Y, Zhang Q, Chen MS, Gao W, Zhang L. Emerging approaches to functionalizing cell membrane-coated nanoparticles. Biochemistry. 2021;60:941–55. https://doi.org/10.1021/acs.biochem.0c00343.

    Article  PubMed  CAS  Google Scholar 

  120. Zhang Y, Cai K, Li C, Guo Q, Chen Q, He X, Liu L, Zhang Y, Lu Y, Chen X, Sun T, Huang Y, Cheng J, Jiang C. Macrophage-membrane-coated nanoparticles for tumor-targeted chemotherapy. Nano Lett. 2018;18:1908–15. https://doi.org/10.1021/acs.nanolett.7b05263.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Jan N, Madni A, Khan S, Shah H, Akram F, Khan A, Ertas D, Bostanudin MF, Contag CH, Ashammakhi N, Ertas YN. Biomimetic cell membrane-coated poly(lactic-co-glycolic acid) nanoparticles for biomedical applications. Bioeng Transl Med. 2022;:1–36. https://doi.org/10.1002/btm2.10441.

  122. Hu CMJ, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci U S A. 2011;108:10980–5. https://doi.org/10.1073/pnas.1106634108.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Rao L, Yu GT, Meng QF, Bu LL, Tian R, Sen Lin L, Deng H, Yang W, Zan M, Ding J, Li A, Xiao H, Sun ZJ, Liu W, Chen X. Cancer cell membrane-coated nanoparticles for personalized therapy in patient-derived xenograft models. Adv Funct Mater. 2019;29:1–10. https://doi.org/10.1002/adfm.201905671.

    Article  CAS  Google Scholar 

  124. Nie D, Dai Z, Li J, Yang Y, Xi Z, Wang J, Zhang W, Qian K, Guo S, Zhu C, Wang R, Li Y, Yu M, Zhang X, Shi X, Gan Y. Cancer-cell-membrane-coated nanoparticles with a yolk-shell structure augment cancer chemotherapy. Nano Lett. 2020;20:936–46. https://doi.org/10.1021/acs.nanolett.9b03817.

    Article  PubMed  CAS  Google Scholar 

  125. Jiang Y, Krishnan N, Zhou J, Chekuri S, Wei X, Kroll AV, Yu CL, Duan Y, Gao W, Fang RH, Zhang L. Engineered cell-membrane-coated nanoparticles directly present tumor antigens to promote anticancer immunity. Adv Mater. 2020;32:1–12. https://doi.org/10.1002/adma.202001808.

    Article  CAS  Google Scholar 

  126. Parodi A, Quattrocchi N, Van De Ven AL, Chiappini C, Evangelopoulos M, Martinez JO, Brown BS, Khaled SZ, Yazdi IK, Enzo MV, Isenhart L, Ferrari M, Tasciotti E. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat Nanotechnol. 2013;8:61–8. https://doi.org/10.1038/nnano.2012.212.

    Article  PubMed  CAS  Google Scholar 

  127. Fan J, Qin Y, Xiao C, Yuan L, Long Y, Zhao Y, Nguyen W, Chen S, Chen W, Liu X, Liu B. Biomimetic PLGA-based nanocomplexes for improved tumor penetration to enhance chemo-photodynamic therapy against metastasis of TNBC. Mater Today Adv. 2022;16:100289. https://doi.org/10.1016/j.mtadv.2022.100289.

    Article  CAS  Google Scholar 

  128. López Ruiz A, VillasecoArribas E, McEnnis K. Poly(lactic-co-glycolic acid) encapsulated platinum nanoparticles for cancer treatment. Mater Adv. 2022;3:2858–70. https://doi.org/10.1039/d1ma01155c.

    Article  CAS  Google Scholar 

  129. Mansourizadeh F, Sepehri H, Khoee S, Farimani MM, Delphi L, Tousi MS. Designing Salvigenin–loaded mPEG-b-PLGA @Fe3O4 nanoparticles system for improvement of Salvigenin anti-cancer effects on the breast cancer cells, an in vitro study. J Drug Deliv Sci Technol. 2020;57:101619. https://doi.org/10.1016/j.jddst.2020.101619.

    Article  CAS  Google Scholar 

  130. Pugazhendhi A, Edison TNJI, Karuppusamy I, Kathirvel B. Inorganic nanoparticles: a potential cancer therapy for human welfare. Int J Pharm. 2018;539:104–11. https://doi.org/10.1016/j.ijpharm.2018.01.034.

    Article  PubMed  CAS  Google Scholar 

  131. Shenouda AY, Momchilov AA. A study on graphene/tin oxide performance as negative electrode compound for lithium battery application. J Mater Sci Mater Electron. 2019;30:79–90. https://doi.org/10.1007/s10854-018-0265-9.

    Article  CAS  Google Scholar 

  132. Ohmura JF, Burpo FJ, Lescott CJ, Ransil A, Yoon Y, Records WC, Belcher AM. Highly adjustable 3D nano-architectures and chemistries: via assembled 1D biological templates. Nanoscale. 2019;11:1091–101. https://doi.org/10.1039/c8nr04864a.

    Article  PubMed  CAS  Google Scholar 

  133. Zare EN, Jamaledin R, Naserzadeh P, Afjeh-Dana E, Ashtari B, Hosseinzadeh M, Vecchione R, Wu A, Tay FR, Borzacchiello A, Makvandi P. Metal-based nanostructures/PLGA nanocomposites: antimicrobial activity, cytotoxicity, and their biomedical applications. ACS Appl Mater Interfaces. 2020;12:3279–300. https://doi.org/10.1021/acsami.9b19435.

    Article  PubMed  CAS  Google Scholar 

  134. Scavone M, Armentano I, Fortunati E, Cristofaro F, Mattioli S, Torre L, Kenny JM, Imbriani M, Arciola CR, Visai L. Antimicrobial properties and cytocompatibility of PLGA/Ag nanocomposites. Materials (Basel). 2016;9:1–15. https://doi.org/10.3390/ma9010037.

    Article  CAS  Google Scholar 

  135. Shome R, Ghosh SS. Transferrin coated d -penicillamine-Au-Cu nanocluster PLGA nanocomposite reverses hypoxia-induced EMT and MDR of triple-negative breast cancers. ACS Appl Bio Mater. 2021;4:5033–48. https://doi.org/10.1021/acsabm.1c00296.

    Article  PubMed  CAS  Google Scholar 

  136. Li Y, Qian D, Lin HP, Xie J, Yang P, Maddy D, Xiao Y, Huang X, Wang Z, Yang C. Nanoparticle-delivered miriplatin ultrasmall dots suppress triple negative breast cancer lung metastasis by targeting circulating tumor cells. J Control Release. 2021;329:833–46. https://doi.org/10.1016/j.jconrel.2020.10.015.

    Article  PubMed  CAS  Google Scholar 

  137. Jain DP, Dinakar YH, Kumar H, Jain R. The multifaceted role of extracellular vesicles in prostate cancer-a review. Cancer Drug Resist. 2023;481–99. https://doi.org/10.20517/cdr.2023.17.

  138. Cleeton C, Keirouz A, Chen X, Radacsi N. Electrospun Nano fibers for Drug Delivery and Biosensing. ACS Biomater Sci Eng. 2019;4183–205. https://doi.org/10.1021/acsbiomaterials.9b00853.

  139. Planin O, Ga M, Kocbek P. Journal of drug delivery science and technology electrospun nano fi bers for customized drug-delivery systems. 2019;51:672–681. https://doi.org/10.1016/j.jddst.2019.03.038.

  140. Sun Z, Song C, Wang C, Hu Y, Wu J. Hydrogel-Based Controlled Drug Delivery for Cancer Treatment : A Review. Mol Pharmaceutics. 2020;373–91. https://doi.org/10.1021/acs.molpharmaceut.9b01020.

  141. Dreiss CA. ScienceDirect Hydrogel design strategies for drug delivery. Curr Opin Colloid Interface Sci. 2020;48:1–17. https://doi.org/10.1016/j.cocis.2020.02.001.

    Article  CAS  Google Scholar 

  142. Gao Y, Ren F, Ding B, Sun N, Liu X, Ding X, Gao S. A thermo-sensitive PLGA-PEG-PLGA hydrogel for sustained release of docetaxel. J drug targeting. 2011;19:516–27. https://doi.org/10.3109/1061186X.2010.519031.

    Article  CAS  Google Scholar 

  143. Wang P, Chu W, Zhuo X, Zhang Y, Gou J, Ren T. Modified PLGA – PEG – PLGA thermosensitive. 2017;:1551–1565. https://doi.org/10.1039/c6tb02158a.

  144. Osteolysis P. Exosomes from human urine-derived stem cells encapsulated into PLGA nanoparticles for therapy in mice with particulate. 2021;8:1–15. https://doi.org/10.3389/fmed.2021.781449.

  145. Mo Y, Guo R, Liu J, Lan Y, Zhang Y, Xue W. Colloids and Surfaces B : Biointerfaces Preparation and properties of PLGA nanofiber membranes reinforced with cellulose nanocrystals. Colloids Surfaces B Biointerfaces. 2015;132:177–84. https://doi.org/10.1016/j.colsurfb.2015.05.029.

    Article  PubMed  CAS  Google Scholar 

  146. Akpan UM, Pellegrini M, Obayemi JD, Ezenwafor T, Browl D, Ani CJ, Yiporo D, Salifu A, Dozie-Nwachukwu S, Odusanya S, Freeman J, Soboyejo WO. Prodigiosin-loaded electrospun nanofibers scaffold for localized treatment of triple negative breast cancer. Mater Sci Eng C. 2020;114:110976. https://doi.org/10.1016/j.msec.2020.110976.

    Article  CAS  Google Scholar 

  147. Rahmani F, Atabaki R, Behrouzi S, Mohamadpour F, Kamali H. The recent advancement in the PLGA-based thermo-sensitive hydrogel for smart drug delivery. Int J Pharm. 2023;631:122484. https://doi.org/10.1016/j.ijpharm.2022.122484.

    Article  PubMed  CAS  Google Scholar 

  148. Akpan UM, Pellegrini M, Obayemi JD, Ezenwafor T, Browl D, Ani CJ, Yiporo D. Materials science & engineering C prodigiosin-loaded electrospun nanofibers scaffold for localized treatment of triple negative breast cancer. Mater Sci Eng C. 2020;114:110976. https://doi.org/10.1016/j.msec.2020.110976.

    Article  CAS  Google Scholar 

  149. Li S, Wu Y, Ding F, Yang J, Li J, Gao X, Zhang C, Feng J. Targeted chemotherapy of triple-negative breast. 2020;:10854–10862. https://doi.org/10.1039/d0nr00523a.

  150. Meena R, Kumar S, Kumar R, Gaharwar US, Rajamani P. PLGA-CTAB curcumin nanoparticles: fabrication, characterization and molecular basis of anticancer activity in triple negative breast cancer cell lines (MDA-MB-231 cells). Biomed Pharmacother. 2017;94:944–54. https://doi.org/10.1016/j.biopha.2017.07.151.

    Article  PubMed  CAS  Google Scholar 

  151. Venugopal V, Krishnan S, Palanimuthu VR, Sankarankutty S, Kalaimani JK, Karupiah S, Kit NS, Hock TT. Anti-EGFR anchored paclitaxel loaded PLGA nanoparticles for the treatment of triple negative breast cancer In-vitro and in-vivo anticancer activities. PLoS One. 2018;13:1–17. https://doi.org/10.1371/journal.pone.0206109.

    Article  CAS  Google Scholar 

  152. Wang S, Shao M, Zhong Z, Wang A, Cao J, Lu Y, Wang Y, Zhang J. Co-delivery of gambogic acid and TRAIL plasmid by hyaluronic acid grafted PEI-PLGA nanoparticles for the treatment of triple negative breast cancer. Drug Deliv. 2017;24:1791–800. https://doi.org/10.1080/10717544.2017.1406558.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Duan T, Xu Z, Sun F, Wang Y, Zhang J, Luo C, Wang M. HPA aptamer functionalized paclitaxel-loaded PLGA nanoparticles for enhanced anticancer therapy through targeted effects and microenvironment modulation. Biomed Pharmacother. 2019;117:109121. https://doi.org/10.1016/j.biopha.2019.109121.

    Article  PubMed  CAS  Google Scholar 

  154. Bhargava-Shah A, Foygel K, Devulapally R, Paulmurugan R. Orlistat and antisense-miRNA-loaded PLGA-PEG nanoparticles for enhanced triple negative breast cancer therapy. Nanomedicine. 2016;11:235–47. https://doi.org/10.2217/nnm.15.193.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Gong C, Yu X, Zhang W, Han L, Wang R, Wang Y, Gao S, Yuan Y. Regulating the immunosuppressive tumor microenvironment to enhance breast cancer immunotherapy using pH-responsive hybrid membrane-coated nanoparticles. J Nanobiotechnology. 2021;19:1–20. https://doi.org/10.1186/s12951-021-00805-8.

    Article  CAS  Google Scholar 

  156. Jain AK, Swarnakar NK, Godugu C, Singh RP, Jain S. The effect of the oral administration of polymeric nanoparticles on the efficacy and toxicity of tamoxifen. Biomaterials. 2011;32:503–15. https://doi.org/10.1016/j.biomaterials.2010.09.037.

    Article  PubMed  CAS  Google Scholar 

  157. Saengruengrit C, Ritprajak P, Wanichwecharungruang S, Sharma A, Salvan G, Zahn DRT, Insin N. The combined magnetic field and iron oxide-PLGA composite particles: Effective protein antigen delivery and immune stimulation in dendritic cells. J Colloid Interface Sci. 2018;520:101–11. https://doi.org/10.1016/j.jcis.2018.03.008.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research NIPER Hyderabad, Ministry of Chemicals and Fertilizers, New Delhi.

Author information

Authors and Affiliations

Authors

Contributions

Yirivinti Hayagreeva Dinakar: conceptualization and writing, writing—original draft preparation, Naveen Rajana: gathering content and writing, Nalla Usha Kumari: writing—revising original draft, editing. Vikas Jain: reviewing and editing, Neelesh Kumar Mehra: conceptualization, reviewing, editing and supervision.

Corresponding author

Correspondence to Neelesh Kumar Mehra.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinakar, Y.H., Rajana, N., Kumari, N.U. et al. Recent Advances of Multifunctional PLGA Nanocarriers in the Management of Triple-Negative Breast Cancer. AAPS PharmSciTech 24, 258 (2023). https://doi.org/10.1208/s12249-023-02712-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02712-7

Keywords

Navigation