Skip to main content
Log in

A Chewing Study of Abuse-Deterrent Tablets Containing Polyethylene Oxide Using a Robotic Simulator

  • Research Article
  • Advancements in Modified-release Oral Drug Delivery - Delivery throughout the Gastro-intestinal Tract
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Abuse-deterrent formulations (ADFs) refer to formulation technologies aiming to deter the abuse of prescription drugs by making the dosage forms difficult to manipulate or extract the opioids. Assessments are required to evaluate the performance of the drugs through different routes including injection, ingestion, and insufflation and also when the drugs are manipulated. Chewing is the easiest and most convenient way to manipulate the drugs and deserves investigation. Chewing is one of the most complex bioprocesses, where the ingested materials are subject to periodic tooth crushing, mixed through the tongue, and lubricated and softened by the saliva. Inter- and intra-subject variations in chewing patterns may result in different chewing performances. The purpose of this study is to use a chewing simulator to assess the deterrent properties of tablets made of polyethylene oxide (PEO). The simulator can mimic human molar grinding with variable chewing parameters including molar trajectory, chewing frequency, and saliva flow rate. To investigate the effects of these parameters, the sizes of the chewed tablet particles and the chewing force were measured to evaluate the chewing performance. Thirty-four out of forty tablets were broken into pieces. The results suggested that the simulator can chew the tablets into smaller particles and that the molar trajectory and saliva flow rate had significant effect on reducing the size of the particles by analysis of variance (ANOVA) while the effect of chewing frequency was not clear. Additionally, chewing force can work as an indicator of the chewing performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bannwarth B. Will abuse-deterrent formulations of opioid analgesics be successful in achieving their purpose? Drugs. 2012;72:1713–23. https://doi.org/10.2165/11635860-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  2. Litman R, Pagán O, Cicero T. Abuse-deterrent opioid formulations. Anesthesiology. 2018;128:1015–26. https://doi.org/10.1097/ALN.0000000000002031.

    Article  PubMed  Google Scholar 

  3. Cicero TJ, Ellis MS. Abuse-deterrent formulations and the prescription opioid abuse epidemic in the United States: lessons learned from OxyContin. JAMA Psychiatry. 2015;72:424–30. https://doi.org/10.1001/jamapsychiatry.2014.3043.

    Article  PubMed  Google Scholar 

  4. Rezaei L, Meruva S, Donovan MD. Effect of manufacturing process on the retention of abuse-deterrent properties of PEO-matrix tablets. AAPS PharmSciTech. 2021;23:38. https://doi.org/10.1208/s12249-021-02169-6.

    Article  CAS  PubMed  Google Scholar 

  5. Rahman Z, Zidan AS, Korang-Yeboah M, Yang Y, Siddiqui A, Shakleya D, et al. Effects of excipients and curing process on the abuse deterrent properties of directly compressed tablets. Int J Pharm. 2017;517:303–11. https://doi.org/10.1016/j.ijpharm.2016.12.015.

    Article  CAS  PubMed  Google Scholar 

  6. Hemmingsen PH, Haahr A, Gunnergaard C, Cardot J. development of a new type of prolonged release hydrocodone formulation based on Egalet® ADPREM technology using in vivo–in vitro correlation. Pharmaceutics. 2011;3:73–87. https://doi.org/10.3390/pharmaceutics3010073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Barakh Ali SF, Dharani S, Afrooz H, Mohamed EM, Cook P, Khan MA, et al. Development of abuse-deterrent formulations using sucrose acetate isobutyrate. AAPS PharmSciTech. 2020;21:99. https://doi.org/10.1208/s12249-020-01646-8.

    Article  CAS  PubMed  Google Scholar 

  8. Maincent J, Zhang F. Recent advances in abuse-deterrent technologies for the delivery of opioids. Int J Pharm. 2016;510:57–72. https://doi.org/10.1016/j.ijpharm.2016.06.012.

    Article  CAS  PubMed  Google Scholar 

  9. Dharani S, Barakh Ali SF, Afrooz H, Mohamed EM, Cook P, Khan MA, et al. Development of methamphetamine abuse–deterrent formulations using sucrose acetate isobutyrate. J Pharm Sci. 2020;109:1338–46. https://doi.org/10.1016/j.xphs.2019.12.003.

    Article  CAS  PubMed  Google Scholar 

  10. Gudin J. Oxycodone DETERx®: a novel abuse-deterrent, extended-release analgesic option for the treatment of patients with chronic pain. Pain Ther. 2016;5:171–86. https://doi.org/10.1007/s40122-016-0062-1.

    Article  PubMed  PubMed Central  Google Scholar 

  11. McCulloch R, Sattar M, Henderson EM, Lane ME, Bluebond-Langner M. Use of buccal morphine in the management of pain in children with life-limiting conditions: results of a laboratory study. Palliat Med. 2018;32:554–8. https://doi.org/10.1177/0269216317717192.

    Article  PubMed  Google Scholar 

  12. Sohn JS, Choi J. Design of abuse-deterrent formulations using various types of thermal deformed starch (TDS). J Pharm Innov. 2023. https://doi.org/10.1007/s12247-023-09731-8.

    Article  Google Scholar 

  13. Vasiukhina A, Gad SF, Wellington EN, Wilmes DM, Yeo Y, Solorio L. PLA-PCL microsphere formulation to deter abuse of prescription opioids by smoking. Int J Pharm. 2022;626:122151. https://doi.org/10.1016/j.ijpharm.2022.122151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Abuse-deterrent opioid analgesics. 2021. https://www.fda.gov/drugs/postmarket-drug-safety-information-patients-and-providers/abuse-deterrent-opioid-analgesics. Accessed 27 Jun 2022.

  15. Kibria G, Bandaranayake B, Zheng J, Lee S, Cruz C. Stability of abuse-deterrent properties of PEO-based abuse-deterrent formulation. Int J Pharm. 2023;631:122430. https://doi.org/10.1016/j.ijpharm.2022.122430.

    Article  CAS  PubMed  Google Scholar 

  16. Salem S, Smith DT, Byrn SR. Degradation products of the abuse deterrent agent poly(ethylene) oxide under thermal manipulation conditions. J Drug Deliv Sci Technol. 2023;84:104450. https://doi.org/10.1016/j.jddst.2023.104450.

    Article  CAS  Google Scholar 

  17. Qu H, Smith WC, Feng X, Wang J, Pinto J, Xu X, et al. Asymmetrical flow field flow fractionation for molar mass characterization of polyethylene oxide in abuse-deterrent formulations. J Chromatogr A. 2023;1705:464186. https://doi.org/10.1016/j.chroma.2023.464186.

    Article  CAS  PubMed  Google Scholar 

  18. Smith WC, Qu H, Zheng K, Baek JH, Gao Y, Buehler PW, et al. Determining critical overlap concentration of polyethylene oxide to support excipient safety assessment of opioid products. Int J Pharm. 2023;632:122557. https://doi.org/10.1016/j.ijpharm.2022.122557.

    Article  CAS  PubMed  Google Scholar 

  19. Guidance for industry: abuse-deterrent opioids — evaluation and labeling. 2015. https://www.fda.gov/media/84819/download. Accessed 27 Jun 2022.

  20. Xu X, Gupta A, Al-Ghabeish M, Calderon SN, Khan MA. Risk based in vitro performance assessment of extended release abuse deterrent formulations. Int J Pharm. 2016;500:255–67. https://doi.org/10.1016/j.ijpharm.2016.01.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Feng X, Wu K, Balajee V, Leissa J, Ashraf M, Xu X. Understanding syringeability and injectability of high molecular weight PEO solution through time-dependent force-distance profiles. Int J Pharm. 2023;631:122486. https://doi.org/10.1016/j.ijpharm.2022.122486.

    Article  CAS  PubMed  Google Scholar 

  22. Boyce H, Smith D, Byrn S, Saluja B, Qu W, Gurvich VJ, et al. In vitro assessment of nasal insufflation of comminuted drug products designed as abuse deterrent using the vertical diffusion cell. AAPS PharmSciTech. 2018;19:1744–57. https://doi.org/10.1208/s12249-017-0947-2.

    Article  CAS  PubMed  Google Scholar 

  23. Chen H. Current impact and application of abuse-deterrent opioid formulations in clinical practice. Pain Physician. 2017;7:1003–23. https://doi.org/10.36076/ppj/2017.7.E1003.

    Article  Google Scholar 

  24. Gudin J, Levy-Cooperman N, Kopecky EA, Fleming AB. Comparing the effect of tampering on the oral pharmacokinetic profiles of two extended-release oxycodone formulations with abuse-deterrent properties. Pain Med. 2015;16:2142–51. https://doi.org/10.1111/pme.12834.

    Article  PubMed  Google Scholar 

  25. Raofi S, Kinjo M, Sun D, Li Z, Boyce H, Natarajan K, et al. Particle size affects pharmacokinetics of milled oxycodone hydrochloride tablet products following nasal insufflation in nondependent, recreational opioid users. Clin Transl Sci. 2021;14:1977–87. https://doi.org/10.1111/cts.13053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hsu H, Yang Y, Pavuluri V, Abraham C, Naraharisetti SB, Ashraf M, et al. Effect of formulation variables on the nasal permeability and stability of naloxone intranasal formulations. AAPS PharmSciTech. 2019;20:232. https://doi.org/10.1208/s12249-019-1452-6.

    Article  CAS  PubMed  Google Scholar 

  27. Ahmad R, Omidian H. Development and in vitro evaluation of an abuse-deterrent formulation based on a crosslinked starch derivative. Int J Pharm. 2019;569:118602. https://doi.org/10.1016/j.ijpharm.2019.118602.

    Article  CAS  PubMed  Google Scholar 

  28. Harris SC, Cipriano A, Colucci SV, Kapil RP, Geoffroy P, Hopyan T, et al. Oral abuse potential, pharmacokinetics, and safety of once-daily, single-entity, extended-release hydrocodone (HYD) in recreational opioid users. Pain Med. 2017;18:1278–91. https://doi.org/10.1093/pm/pnw208.

    Article  PubMed  Google Scholar 

  29. Externbrink A, Sharan S, Sun D, Jiang W, Keire D, Xu X. An in vitro approach for evaluating the oral abuse deterrence of solid oral extended-release opioids with properties intended to deter abuse via chewing. Int J Pharm. 2019;561:305–13. https://doi.org/10.1016/j.ijpharm.2019.03.017.

    Article  CAS  PubMed  Google Scholar 

  30. Altomare C, Paletski J, Kinzler ER, Cone E, Costantino A. In vitro differentiation of two FDA-approved abuse deterrent opioids’ resistance to oral mastication. Drugscan. 2017. http://34.208.165.0/assets/img/work/Drugscan%20mastication%20poster%20Painweek%202017.pdf. Accessed 27 Jun 2022.

  31. Chen J. Food oral processing—a review. Food Hydrocoll. 2009;23:1–25. https://doi.org/10.1016/j.foodhyd.2007.11.013.

    Article  CAS  Google Scholar 

  32. Xu W, Bronlund JE, Potgieter J, Foster KD, Röhrle O, Pullan AJ, et al. Review of the human masticatory system and masticatory robotics. Mech Mach Theory. 2008;43:1353–75. https://doi.org/10.1016/j.mechmachtheory.2008.06.003.

    Article  Google Scholar 

  33. Peyron MA, Lassauzay C, Woda A. Effects of increased hardness on jaw movement and muscle activity during chewing of visco-elastic model foods. Exp Brain Res. 2002;142:41–51. https://doi.org/10.1007/s00221-001-0916-5.

    Article  CAS  PubMed  Google Scholar 

  34. Komagamine Y, Kanazawa M, Minakuchi S, Uchida T, Sasaki Y. Association between masticatory performance using a colour-changeable chewing gum and jaw movement. J Oral Rehabil. 2011;38:555–63. https://doi.org/10.1111/j.1365-2842.2011.02204.x.

    Article  CAS  PubMed  Google Scholar 

  35. Komino M, Shiga H. Changes in mandibular movement during chewing of different hardness foods. Odontology. 2017;105:418–25. https://doi.org/10.1007/s10266-016-0292-z.

    Article  PubMed  PubMed Central  Google Scholar 

  36. van der Bilt A. Assessment of mastication with implications for oral rehabilitation: a review. J Oral Rehabil. 2011;38:754–80. https://doi.org/10.1111/j.1365-2842.2010.02197.x.

    Article  PubMed  Google Scholar 

  37. Kuninori T, Tomonari H, Uehara S, Kitashima F, Yagi T, Miyawaki S. Influence of maximum bite force on jaw movement during gummy jelly mastication. J Oral Rehabil. 2014;41:338–45. https://doi.org/10.1111/joor.12149.

    Article  CAS  PubMed  Google Scholar 

  38. Pedersen A, Bardow A, Jensen SB, Nauntofte B. Saliva and gastrointestinal functions of taste, mastication, swallowing and digestion. Oral Dis. 2002;8:117–29. https://doi.org/10.1034/j.1601-0825.2002.02851.x.

    Article  CAS  PubMed  Google Scholar 

  39. Lepley CR, Throckmorton GS, Ceen RF, Buschang PH. Relative contributions of occlusion, maximum bite force, and chewing cycle kinematics to masticatory performance. Am J Orthod Dentofacial Orthop. 2011;139:606–13. https://doi.org/10.1016/j.ajodo.2009.07.025.

    Article  PubMed  Google Scholar 

  40. Hoebler M-F, Devaux A, Karinthi C, Belleville J-L, Barry C. Particle size of solid food after human mastication and in vitro simulation of oral breakdown. Int J Food Sci Nutr. 2000;51:353–66. https://doi.org/10.1080/096374800426948.

    Article  CAS  PubMed  Google Scholar 

  41. Eberhard L, Eberhard L, Schneider S, Schneider S, Eiffler C, Eiffler C, et al. Particle size distributions determined by optical scanning and by sieving in the assessment of masticatory performance of complete denture wearers. Clin Oral Invest. 2015;19:429–36. https://doi.org/10.1007/s00784-014-1266-6.

    Article  Google Scholar 

  42. Lepley C, Throckmorton G, Parker S, Buschang PH. Masticatory performance and chewing cycle kinematics—are they related? Angle Orthod. 2010;80:295–301. https://doi.org/10.2319/061109-333.1.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Morell P, Hernando I, Fiszman SM. Understanding the relevance of in-mouth food processing: a review of in vitro techniques. Trends Food Sci Technol. 2013;35:18. https://doi.org/10.1016/j.tifs.2013.10.005.

    Article  CAS  Google Scholar 

  44. Meullenet J, Gandhapuneni RK. Development of the BITE Master II and its application to the study of cheese hardness. Physiol Behav. 2006;89:39–43. https://doi.org/10.1016/j.physbeh.2006.05.012.

    Article  CAS  PubMed  Google Scholar 

  45. Salles C, Tarrega A, Mielle P, Maratray J, Gorria P, Liaboeuf J, et al. Development of a chewing simulator for food breakdown and the analysis of in vitro flavor compound release in a mouth environment. J Food Eng. 2007;82:189–98. https://doi.org/10.1016/j.jfoodeng.2007.02.008.

    Article  Google Scholar 

  46. Woda A, Mishellany-Dutour A, Batier L, François O, Meunier J, Reynaud B, et al. Development and validation of a mastication simulator. J Biomech. 2010;43:1667–73. https://doi.org/10.1016/j.jbiomech.2010.03.002.

    Article  CAS  PubMed  Google Scholar 

  47. Chen B, Dhupia JS, Morgenstern MP, Bronlund JE, Xu W. Development of a biomimetic masticating robot for food texture analysis. J Mech Robot. 2022;14:021012. https://doi.org/10.1115/1.4052379.

    Article  Google Scholar 

  48. Meruva S, Donovan MD. Polyethylene oxide (PEO) molecular weight effects on abuse-deterrent properties of matrix tablets. AAPS PharmSciTech. 2019;21:28. https://doi.org/10.1208/s12249-019-1565-y.

    Article  CAS  PubMed  Google Scholar 

  49. Boyce HJ, Dave VS, Scoggins M, Gurvich VJ, Smith DT, Byrn SR, et al. Physical barrier type abuse-deterrent formulations: mechanistic understanding of sintering-induced microstructural changes in polyethylene oxide placebo tablets. AAPS PharmSciTech. 2020;21:86. https://doi.org/10.1208/s12249-019-1594-6.

    Article  CAS  PubMed  Google Scholar 

  50. Boyce HJ, Ibrahim A, Hoag SW. Physical barrier type abuse-deterrent formulations: monitoring sintering-induced microstructural changes in polyethylene oxide placebo tablets by near infrared spectroscopy (NIRS). Drug Dev Ind Pharm. 2018;44:1885–94. https://doi.org/10.1080/03639045.2018.1504965.

    Article  CAS  PubMed  Google Scholar 

  51. Tocce E, Bishop M, Balwinski K, Watson T, Lapham M, Hewlett K, et al. Mechanical characterization of thermally annealed tablets containing polyethylene oxide for abuse deterrence. AAPS PharmSciTech. 2019;21:2. https://doi.org/10.1208/s12249-019-1528-3.

    Article  CAS  PubMed  Google Scholar 

  52. McKenna WH, inventor, Mannion RO, inventor, O’Donnell EP, inventor, Huang HH, inventor. Purdue Pharma L.P., assignee. Tamper resistant dosage forms. United States patent US 8,808,741 B2. 2014.

  53. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat methods. 2012;9:671–5. https://doi.org/10.1038/nmeth.2089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Panda S, Chen J, Benjamin O. Development of model mouth for food oral processing studies: present challenges and scopes. Innov Food Sci Emerg Technol. 2020;66:102524. https://doi.org/10.1016/j.ifset.2020.102524.

    Article  Google Scholar 

  55. Peyron M, Woda A. An update about artificial mastication. Curr Opin Food Sci. 2016;9:21–8. https://doi.org/10.1016/j.cofs.2016.03.006.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Associate Professor Meng Wai Woo from the Department of Chemical and Materials Engineering, the University of Auckland, for his assistance on testing the tablet strengths.

Funding

The authors would like to acknowledge the US Food and Drug Administration (FDA) for the providing financial support for this research under FDA contract 75F40121C00178.

Author information

Authors and Affiliations

Authors

Contributions

All of the authors participated in the writing and editing of this manuscript. B.C. was responsible for experimental execution and data analysis. J.D., F.Z., M.M., and W.X. were involved with the conceptualization of the studies. M.C. and F.Z. were responsible for preparing the materials used in the study.

Corresponding author

Correspondence to Bangxiang Chen.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (ZIP 30231 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Zhang, F., Dhupia, J. et al. A Chewing Study of Abuse-Deterrent Tablets Containing Polyethylene Oxide Using a Robotic Simulator. AAPS PharmSciTech 24, 245 (2023). https://doi.org/10.1208/s12249-023-02706-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02706-5

Keywords

Navigation